Clinical epidemiology in the era of big data: new opportunities, familiar challenges

被引:73
作者
Ehrenstein, Vera [1 ]
Nielsen, Henrik [1 ]
Pedersen, Alma B. [1 ]
Johnsen, Soren P. [1 ]
Pedersen, Lars [1 ]
机构
[1] Aarhus Univ Hosp, Dept Clin Epidemiol, Olof Palmes Alle 43-45, DK-8200 Aarhus N, Denmark
来源
CLINICAL EPIDEMIOLOGY | 2017年 / 9卷
关键词
electronic health records; healthcare administrative claims; medical record linkage; multicenter studies; validation studies; SEROTONIN REUPTAKE INHIBITORS; POPULATION-BASED COHORT; HEALTH-CARE DATABASES; RISK; ARTHROPLASTY; PREGNANCY; ASSOCIATION; EXPERIENCE; REGISTRY; SCIENCE;
D O I
10.2147/CLEP.S129779
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Routinely recorded health data have evolved from mere by-products of health care delivery or billing into a powerful research tool for studying and improving patient care through clinical epidemiologic research. Big data in the context of epidemiologic research means large interlinkable data sets within a single country or networks of multinational databases. Several Nordic, European, and other multinational collaborations are now well established. Advantages of big data for clinical epidemiology include improved precision of estimates, which is especially important for reassuring ("null") findings; ability to conduct meaningful analyses in subgroup of patients; and rapid detection of safety signals. Big data will also provide new possibilities for research by enabling access to linked information from biobanks, electronic medical records, patient-reported outcome measures, automatic and semiautomatic electronic monitoring devices, and social media. The sheer amount of data, however, does not eliminate and may even amplify systematic error. Therefore, methodologies addressing systematic error, clinical knowledge, and underlying hypotheses are more important than ever to ensure that the signal is discernable behind the noise.
引用
收藏
页码:245 / 250
页数:6
相关论文
共 58 条
[1]   Big Data for Health [J].
Andreu-Perez, Javier ;
Poon, Carmen C. Y. ;
Merrifield, Robert D. ;
Wong, Stephen T. C. ;
Yang, Guang-Zhong .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (04) :1193-1208
[2]   Harmonization process for the identification of medical events in eight European healthcare databases: the experience from the EU-ADR project [J].
Avillach, Paul ;
Coloma, Preciosa M. ;
Gini, Rosa ;
Schuemie, Martijn ;
Mougin, Fleur ;
Dufour, Jean-Charles ;
Mazzaglia, Giampiero ;
Giaquinto, Carlo ;
Fornari, Carla ;
Herings, Ron ;
Molokhia, Mariam ;
Pedersen, Lars ;
Fourrier-Reglat, Annie ;
Fieschi, Marius ;
Sturkenboom, Miriam ;
van der Lei, Johan ;
Pariente, Antoine ;
Trifiro, Gianluca .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (01) :184-192
[3]   PRESCRIPTION OF HYPOTENSIVES IN GENERAL-PRACTICE - STUDY OF 4 NORWEGIAN COUNTIES IN OCTOBER 1975 [J].
BAKSAAS, I ;
FUGELLI, P ;
HALVORSEN, IK ;
LUNDE, PKM ;
NAESS, K .
EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 1978, 14 (05) :309-317
[4]   Toward a Literature-Driven Definition of Big Data in Healthcare [J].
Baro, Emilie ;
Degoul, Samuel ;
Beuscart, Regis ;
Chazard, Emmanuel .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[5]  
Broniatowski DA, 2014, SCIENCE, V345, P148, DOI 10.1126/science.345.6193.148-a
[6]   Big Data in Epidemiology Too Big to Fail? [J].
Chiolero, Arnaud .
EPIDEMIOLOGY, 2013, 24 (06) :938-939
[7]   Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project [J].
Coloma, Preciosa M. ;
Schuemie, Martijn J. ;
Trifiro, Gianluca ;
Gini, Rosa ;
Herings, Ron ;
Hippisley-Cox, Julia ;
Mazzaglia, Giampiero ;
Giaquinto, Carlo ;
Corrao, Giovanni ;
Pedersen, Lars ;
van der Lei, Johan ;
Sturkenboom, Miriam .
PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 (01) :1-11
[8]   Big Data in Health: a Literature Review from the Year 2005 [J].
de la Torre Diez, Isabel ;
Cosgaya, Hector Merino ;
Garcia-Zapirain, Begona ;
Lopez-Coronado, Miguel .
JOURNAL OF MEDICAL SYSTEMS, 2016, 40 (09)
[9]   Helping everyone do better: a call for validation studies of routinely recorded health data [J].
Ehrenstein, Vera ;
Petersen, Irene ;
Smeeth, Liam ;
Jick, Susan S. ;
Benchimol, Eric I. ;
Ludvigsson, Jonas F. ;
Sorensen, Henrik Toft .
CLINICAL EPIDEMIOLOGY, 2016, 8 :49-51
[10]   Psychological Language on Twitter Predicts County-Level Heart Disease Mortality [J].
Eichstaedt, Johannes C. ;
Schwartz, Hansen Andrew ;
Kern, Margaret L. ;
Park, Gregory ;
Labarthe, Darwin R. ;
Merchant, Raina M. ;
Jha, Sneha ;
Agrawal, Megha ;
Dziurzynski, Lukasz A. ;
Sap, Maarten ;
Weeg, Christopher ;
Larson, Emily E. ;
Ungar, Lyle H. ;
Seligman, Martin E. P. .
PSYCHOLOGICAL SCIENCE, 2015, 26 (02) :159-169