Nonconforming FEM for the obstacle problem

被引:14
作者
Carstensen, C. [1 ]
Koehler, K. [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
关键词
obstacle problem; variational inequality; nonconforming; finite elements; medius analysis; a priori error analysis; a posteriori error analysis; guaranteed upper error bounds; lower energy bounds; adaptive mesh refinement; POSTERIORI ERROR ESTIMATORS; FINITE-ELEMENT METHODS; CROUZEIX-RAVIART; APPROXIMATION; INEQUALITIES;
D O I
10.1093/imanum/drw005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main motivation for the application of the Crouzeix-Raviart nonconforming finite element method (NCFEM) to the obstacle problem in this paper is that it allows for fully computable guaranteed lower bounds of the energy and so for simple a posteriori error control. Afurther fully computable and guaranteed upper error bound follows from Braess' work, extended to the Crouzeix-Raviart NCFEM. This error bound competes with the error control from the lower energy bounds. Both a posteriori estimates are efficient with respect to the total error. The paper circumvents variational crimes through a medius analysis and the design of conforming companions. This leads to an improved a priori error analysis for the NCFEMs under minimal regularity assumptions on polyhedral domains. Numerical evidence supports the a priori convergence analysis and confirms guaranteed error control with moderate efficiency indices for uniform and adaptive mesh refinement.
引用
收藏
页码:64 / 93
页数:30
相关论文
共 21 条
[11]   EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS [J].
Carstensen, Carsten ;
Gedicke, Joscha ;
Rim, Donsub .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (04) :337-353
[12]  
Ciarlet P., 2002, Classics in applied mathematics, DOI DOI 10.1137/1.9780898719208
[13]  
FALK RS, 1974, MATH COMPUT, V28, P963, DOI 10.1090/S0025-5718-1974-0391502-8
[14]  
Gräser C, 2009, J COMPUT MATH, V27, P1
[15]  
Gudi T, 2014, MATH COMPUT, V83, P579
[16]  
Kinderlehrer D., 1980, Pure Applied in Mathematics
[17]   Minimizing Neumann fundamental tones of triangles: An optimal Poincare inequality [J].
Laugesen, R. S. ;
Siudeja, B. A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (01) :118-135
[18]   Pointwise a posteriori error control for elliptic obstacle problems [J].
Nochetto, RH ;
Siebert, KG ;
Veeser, A .
NUMERISCHE MATHEMATIK, 2003, 95 (01) :163-195
[19]  
Rodrigues JF, 1987, OBSTACLE PROBLEMS MA
[20]  
Verf?rth R., 1996, REV POSTERIORI ERROR