Nonconforming FEM for the obstacle problem

被引:14
作者
Carstensen, C. [1 ]
Koehler, K. [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
关键词
obstacle problem; variational inequality; nonconforming; finite elements; medius analysis; a priori error analysis; a posteriori error analysis; guaranteed upper error bounds; lower energy bounds; adaptive mesh refinement; POSTERIORI ERROR ESTIMATORS; FINITE-ELEMENT METHODS; CROUZEIX-RAVIART; APPROXIMATION; INEQUALITIES;
D O I
10.1093/imanum/drw005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main motivation for the application of the Crouzeix-Raviart nonconforming finite element method (NCFEM) to the obstacle problem in this paper is that it allows for fully computable guaranteed lower bounds of the energy and so for simple a posteriori error control. Afurther fully computable and guaranteed upper error bound follows from Braess' work, extended to the Crouzeix-Raviart NCFEM. This error bound competes with the error control from the lower energy bounds. Both a posteriori estimates are efficient with respect to the total error. The paper circumvents variational crimes through a medius analysis and the design of conforming companions. This leads to an improved a priori error analysis for the NCFEMs under minimal regularity assumptions on polyhedral domains. Numerical evidence supports the a priori convergence analysis and confirms guaranteed error control with moderate efficiency indices for uniform and adaptive mesh refinement.
引用
收藏
页码:64 / 93
页数:30
相关论文
共 21 条
[1]   Remarks around 50 lines of Matlab: short finite element implementation [J].
Alberty, J ;
Carstensen, C ;
Funken, SA .
NUMERICAL ALGORITHMS, 1999, 20 (2-3) :117-137
[2]  
Bahriawati C., 2005, Comput. Meth. Appl. Math., V5, P333
[3]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[4]   Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis [J].
Bartels, S ;
Carstensen, C ;
Dolzmann, G .
NUMERISCHE MATHEMATIK, 2004, 99 (01) :1-24
[5]   A posteriori error estimators for obstacle problems - another look [J].
Braess, D .
NUMERISCHE MATHEMATIK, 2005, 101 (03) :415-421
[6]   A posteriori estimators for obstacle problems by the hypercircle method [J].
Braess, Dietrich ;
Hoppe, Ronald H. W. ;
Schoeberl, Joachim .
COMPUTING AND VISUALIZATION IN SCIENCE, 2008, 11 (4-6) :351-362
[7]   Poincare-Friedrichs inequalities for piecewise H1 functions [J].
Brenner, SC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :306-324
[8]   Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem [J].
Carstensen, C. ;
Merdon, C. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 249 :74-94
[9]  
Carstensen C, 2015, MATH COMPUT, V84, P1061
[10]   Guaranteed lower eigenvalue bounds for the biharmonic equation [J].
Carstensen, Carsten ;
Gallistl, Dietmar .
NUMERISCHE MATHEMATIK, 2014, 126 (01) :33-51