High-performance vector bending and orientation distinguishing curvature sensor based on asymmetric coupled multi-core fibre

被引:34
作者
Arrizabalaga, Oskar [1 ]
Sun, Qi [2 ]
Beresna, Martynas [2 ]
Lee, Timothy [2 ]
Zubia, Joseba [1 ]
Velasco Pascual, Javier [3 ]
Saez de Ocariz, Idurre [3 ]
Schulzgen, Axel [4 ]
Enrique Antonio-Lopez, Jose [4 ]
Amezcua-Correa, Rodrigo [4 ]
Villatoro, Joel [1 ,5 ]
Brambilla, Gilberto [2 ]
机构
[1] Univ Basque Country, Dept Commun Engn, UPV EHU, Ingeniero Torres Quevedo S-N, Bilbao 48013, Spain
[2] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[3] Fdn Ctr Tecnol Aeronaut CTA, Minano, Spain
[4] Univ Cent Florida, CREOL, Coll Opt & Photon, Orlando, FL 32816 USA
[5] IKERBASQUE Basque Fdn Sci, Bilbao 48011, Spain
关键词
D O I
10.1038/s41598-020-70999-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fibre optic technology is rapidly evolving, driven mainly by telecommunication and sensing applications. Excellent reliability of the manufacturing processes and low cost have drawn ever increasing attention to fibre-based sensors, e.g. for studying mechanical response/limitations of aerospace composite structures. Here, a vector bending and orientation distinguishing curvature sensor, based on asymmetric coupled multi-core fibre, is proposed and experimentally demonstrated. By optimising the mode coupling effect of a seven core multi- core fibre, we have achieved a sensitivity of -1.4 nm/degrees as a vector bending sensor and -17.5 nm/m(-1) as a curvature sensor. These are the highest sensitivities reported so far, to the best of our knowledge. In addition, our sensor offers several advantages such as repeatability of fabrication, wide operating range and small size and weight which benefit its sensing applications.
引用
收藏
页数:10
相关论文
共 35 条
[1]  
[Anonymous], 2015, Fiber Optic Sensors: Fundamentals and Applications, DOI DOI 10.1117/3.1002910
[2]  
[Anonymous], 2014, ASTM C469/C469M-14-1
[3]   OPTICAL-WAVEGUIDE THEORY [J].
ARNAUD, J .
OPTICAL AND QUANTUM ELECTRONICS, 1980, 12 (03) :187-191
[4]   Towards a practical structural health monitoring technology for patched cracks in aircraft structure [J].
Baker, Alan ;
Rajic, Nik ;
Davis, Claire .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2009, 40 (09) :1340-1352
[5]   Toughened carbon fibre-reinforced polymer composites with nanoparticle-modified epoxy matrices [J].
Carolan, D. ;
Ivankovic, A. ;
Kinloch, A. J. ;
Sprenger, S. ;
Taylor, A. C. .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (03) :1767-1788
[6]   Mode coupling dynamics and communication strategies for multi-core fiber systems [J].
Chan, Florence Y. M. ;
Lau, Alan Pak Tao ;
Tam, Hwa-Yaw .
OPTICS EXPRESS, 2012, 20 (04) :4548-4563
[7]   In-fiber Fabry-Perot interferometer for strain and magnetic field sensing [J].
Costa, Greice K. B. ;
Gouvea, Paula M. P. ;
Soares, Larissa M. B. ;
Pereira, Joao M. B. ;
Favero, Fernando ;
Braga, Arthur M. B. ;
Palffy-Muhoray, Peter ;
Bruno, Antonio C. ;
Carvalho, Isabel C. S. .
OPTICS EXPRESS, 2016, 24 (13) :14690-14696
[8]   Review of optical fiber sensors for deformation measurement [J].
Di, Haiting ;
Xin, Ying ;
Jian, Jinquan .
OPTIK, 2018, 168 :703-713
[9]   Microbubble based fiber-optic Fabry-Perot interferometer formed by fusion splicing single-mode fibers for strain measurement [J].
Duan, De-Wen ;
Rao, Yun-Jiang ;
Hou, Yu-Song ;
Zhu, Tao .
APPLIED OPTICS, 2012, 51 (08) :1033-1036
[10]   Current and potential future research activities in adaptive structures: an ARO perspective [J].
Garg, DP ;
Zikry, MA ;
Anderson, GL .
SMART MATERIALS AND STRUCTURES, 2001, 10 (04) :610-623