Nighttime O(1D) and corresponding Atmospheric Band emission (762 nm) derived from rocket-borne experiment

被引:1
作者
Grygalashvyly, Mykhaylo [1 ]
Strelnikov, Boris [1 ]
Eberhart, Martin [4 ]
Hedin, Jonas [3 ]
Khaplanov, Mikhail [3 ]
Gumbel, Joerg [3 ]
Rapp, Markus [2 ]
Luebken, Franz-Josef [1 ]
Loehle, Stefan [4 ]
Fasoulas, Stefanos [4 ]
机构
[1] Univ Rostock Kuhlungsborn, Leibniz Inst Atmospher Phys, Schloss Str 6, D-18225 Ostseebad, Kuhlungsborn, Germany
[2] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[3] Stockholm Univ, Dept Meteorol MISU, Stockholm, Sweden
[4] Univ Stuttgart, Inst Space Syst, Stuttgart, Germany
关键词
Atmospheric band emission; Kalogerakis-Sharma mechanism; Two-step mechanism; MLT region;
D O I
10.1016/j.jastp.2020.105522
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Based on common volume rocket-borne measurements of temperature, densities of atomic oxygen and neutral air, we derived O(D-1) nighttime concentrations and corresponding Atmospheric band emission (762 nm). This is one of the first retrievals of the nighttime O(D-1) concentration. Recently, Kalogerakis, Sharma and co-workers have suggested a new production path of O(D-1) based on the reaction of vibrationally excited OH and O. We calculate Atmospheric band volume emission related to the population of O-2(b(1)Sigma(+)(g)) from O(D-1) and compare with total Atmospheric band emissions observed during the same rocket launch. This allows an estimation of the relative contribution of the new Kalogerakis-Sharma mechanism (KSM) to the total Atmospheric band emission. The concentration of O(D-1) due to KSM amounts to several tens cm(-3) with a peak around 95 km. The KSM gives an essential contribution to the total Atmospheric band volume emission (762 nm). Additionally, we illustrate analytically that the expressions for volume emission by the new KSM and the traditional two-step mechanism have similar functional dependences on the atmospheric concentrations of O and O-2. This causes an ambiguity, when interpreting Atmospheric band observations in terms of the one mechanism or the other.
引用
收藏
页数:9
相关论文
共 76 条
[1]   Kinetic parameters for OH nightglow modeling consistent with recent laboratory measurements [J].
Adler-Golden, S .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1997, 102 (A9) :19969-19976
[2]   EXCITATION AND QUENCHING OF THE OXYGEN BANDS IN THE NIGHTGLOW [J].
BATES, DR .
PLANETARY AND SPACE SCIENCE, 1988, 36 (09) :875-881
[3]   Ozone chemical equilibrium in the extended mesopause under the nighttime conditions [J].
Belikovich, M. V. ;
Kulikov, M. Yu. ;
Grygalashvyly, M. ;
Sonnemann, G. R. ;
Ennakova, T. S. ;
Nechaev, A. A. ;
Feigin, A. M. .
ADVANCES IN SPACE RESEARCH, 2018, 61 (01) :426-432
[4]   Comparisons of spectrally resolved nightglow emission locally simulated with space and ground level observations [J].
Bellisario, Christophe ;
Simoneau, Pierre ;
Keckhut, Philippe ;
Hauchecorne, Alain .
JOURNAL OF SPACE WEATHER AND SPACE CLIMATE, 2020, 10
[5]  
Bevington P. R., 2003, DATA REDUCTION ERROR
[6]  
Burkholder J. B., 2015, JPL PUBLICATION, V15-10
[7]  
Campbell I.M., 1973, Chem. Phys. Lett, V8, P259
[8]   Implications of the O+OH reaction in hydroxyl nightglow modeling [J].
Caridade, P. J. S. B. ;
Horta, J. -Z. J. ;
Varandas, A. J. C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (01) :1-13
[9]   Updated Long-Term Trends in Mesopause Temperature, Airglow Emissions, and Noctilucent Clouds [J].
Dalin, P. ;
Perminov, V ;
Pertsev, N. ;
Romejko, V .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (05)
[10]   Measurement of atomic oxygen in the middle atmosphere using solid electrolyte sensors and catalytic probes [J].
Eberhart, M. ;
Loehle, S. ;
Steinbeck, A. ;
Binder, T. ;
Fasoulas, S. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (09) :3701-3714