High-mass-loading Sn-based anode boosted by pseudocapacitance for long-life sodium-ion batteries

被引:41
作者
He, Wei [1 ]
Chen, Ke [1 ]
Pathak, Rajesh [2 ]
Hummel, Matthew [1 ]
Reza, Khan Mamun [1 ]
Ghimire, Nabin [1 ]
Pokharel, Jyotshna [1 ]
Lu, Shun [2 ]
Gu, Zhengrong [2 ]
Qiao, Qiquan [3 ]
Zhou, Yue [1 ]
机构
[1] South Dakota State Univ, Dept Elect Engn & Comp Sci, Brookings, SD 57007 USA
[2] South Dakota State Univ, Dept Agr & Biosyst Engn, Brookings, SD 57007 USA
[3] Syracuse Univ, Dept Mech & Aerosp Engn, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
Free-standing anode; High mass loading; Pseudocapacitive contribution; Sodium ion batteries; N-DOPED CARBON; LITHIUM-ION; HIGH-CAPACITY; YOLK-SHELL; PERFORMANCE; NANOFIBERS; NANODOTS; NANOPARTICLES; EVOLUTION; INSIGHTS;
D O I
10.1016/j.cej.2021.128638
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sodium-ion batteries (SIBs) are considered as a promising alternative to lithium-ion batteries in large-scale energy storage due to the abundant sodium resources and low cost. However, the practical applications are still hindered by several factors such as limited cycling life and low mass loading of the electrode. Herein, a uniform free-standing Sn-based (Sn@CFC) electrode was synthesized via a facile electrospinning method. The cross-link nitrogen-doped carbon fiber and ultrasmall metallic Sn nanoparticles together provide fast ions and electrons pathway, enabling a dominant pseudocapacitance contribution of 87.1% at a scan rate of 0.5 mV s(-1). The Sn@CFC electrode hence exhibits a high reversible area capacity of 1.68 mAh cm(-2) at 50 mA g(-1) and long cycle life of 1000 cycles at 200 mA g(-1) with more than 80% capacity retention. Moreover, the facile manufacturing technique yields the Sn@CFC electrode with an extremely high mass loading of 5.5 mg cm(-2) with very little sacrifice of electrochemical performances. This study provides a promising route to scalably fabricate electrodes with high area capacity and high energy density for advanced SIBs.
引用
收藏
页数:8
相关论文
共 61 条
[1]   Tin-Germanium Alloys as Anode Materials for Sodium-Ion Batteries [J].
Abel, Paul R. ;
Fields, Meredith G. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) :15860-15867
[2]   Tracking Sodium-Antimonide Phase Transformations in Sodium-Ion Anodes: Insights from Operando Pair Distribution Function Analysis and Solid-State NMR Spectroscopy [J].
Allan, Phoebe K. ;
Griffin, John M. ;
Darwiche, Ali ;
Borkiewicz, Olaf J. ;
Wiaderek, Kamila M. ;
Chapman, Karena W. ;
Morris, Andrew J. ;
Chupas, Peter J. ;
Monconduit, Laure ;
Grey, Clare P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (07) :2352-2365
[3]   Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries [J].
Chang, Xinghua ;
Wang, Teng ;
Liu, Zhiliang ;
Zheng, Xinyao ;
Zheng, Jie ;
Li, Xingguo .
NANO RESEARCH, 2017, 10 (06) :1950-1958
[4]   Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Ji, Xiao ;
Gao, Tao ;
Hou, Singyuk ;
Zhou, Xiuquan ;
Wang, Luning ;
Wang, Fei ;
Yang, Chongyin ;
Chen, Long ;
Wang, Chunsheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1218-1225
[5]   Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries [J].
Chen, Shuangqiang ;
Ao, Zhimin ;
Sun, Bing ;
Xie, Xiuqiang ;
Wang, Guoxiu .
ENERGY STORAGE MATERIALS, 2016, 5 :180-190
[6]   Antimony Nanorod Encapsulated in Cross-Linked Carbon for High-Performance Sodium Ion Battery Anodes [J].
Cui, Chunyu ;
Xu, Jiantie ;
Zhang, Yiqiong ;
Wei, Zengxi ;
Mao, Minglei ;
Lian, Xin ;
Wang, Shuangyin ;
Yang, Chongyin ;
Fan, Xiulin ;
Ma, Jianmin ;
Wang, Chunsheng .
NANO LETTERS, 2019, 19 (01) :538-544
[7]   Formation of Hierarchical Cu-Doped CoSe2 Microboxes via Sequential Ion Exchange for High-Performance Sodium-Ion Batteries [J].
Fang, Yongjin ;
Yu, Xin-Yao ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2018, 30 (21)
[8]   Defect-Assisted Selective Surface Phosphorus Doping to Enhance Rate Capability of Titanium Dioxide for Sodium Ion Batteries [J].
Gan, Qingmeng ;
He, Hanna ;
Zhu, Youhuan ;
Wang, Zhenyu ;
Qin, Ning ;
Gu, Shuai ;
Li, Zhiqiang ;
Luo, Wen ;
Lu, Zhouguang .
ACS NANO, 2019, 13 (08) :9247-9258
[9]   A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries [J].
He, Wei ;
Liang, Yujia ;
Tian, Huajun ;
Zhang, Shunlong ;
Meng, Zhen ;
Han, Wei-Qiang .
ENERGY STORAGE MATERIALS, 2017, 8 :119-126
[10]   Self-Supporting, Flexible, Additive-Free, and Scalable Hard Carbon Paper Self-Interwoven by 1D Microbelts: Superb Room/Low-Temperature Sodium Storage and Working Mechanism [J].
Hou, Bao-Hua ;
Wang, Ying-Ying ;
Ning, Qiu-Li ;
Li, Wen-Hao ;
Xi, Xiao-Tong ;
Yang, Xu ;
Liang, Hao-jie ;
Feng, Xi ;
Wu, Xing-Long .
ADVANCED MATERIALS, 2019, 31 (40)