Anderson localization problem: An exact solution for 2-D anisotropic systems

被引:6
|
作者
Kuzovkov, V. N.
von Niessen, W.
机构
[1] Univ Latvia, Inst Solid State Phys, LV-1063 Riga, Latvia
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Phys & Theoret Chem, D-38106 Braunschweig, Germany
关键词
random systems; Anderson localization; phase diagram;
D O I
10.1016/j.physa.2006.11.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Our previous results [V.N. Kuzovkov, W. von Niessen, V. Kashcheyevs, O. Hein, J. Phys. Condens. Matter 14 (2002) 13777] dealing with the analytical solution of the two-dimensional (2-D) Anderson localization problem due to disorder is generalized for anisotropic systems (two different hopping matrix elements in transverse directions). We discuss the mathematical nature of the metal-insulator phase transition which occurs in the 2-D case, in contrast to the I-D case, where such a phase transition does not occur. In anisotropic systems two localization lengths arise instead of only one length. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 50 条