Sparse consistency and smoothing for multinomial data

被引:9
作者
Aerts, M [1 ]
Augustyns, I [1 ]
Janssen, P [1 ]
机构
[1] LIMBURGS UNIV CTR,DEPT STAT,B-3590 DIEPENBEEK,BELGIUM
关键词
sparse multinomial data; sparse consistency; frequency estimators; local polynomial smoothers;
D O I
10.1016/S0167-7152(96)00108-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For sparse multinomial data we study sparse consistency rates for frequency estimators and for local polynomial cell probability estimators. Our results illustrate the beneficial effect of nonparametric smoothing. Compared to sparse consistency properties for maximum penalized likelihood cell probability estimators our results require less stringent conditions and allow more flexible sparseness conditions.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 17 条
  • [1] AERTS M, 1995, UNPUB LOCAL POLYNOMI
  • [2] AERTS M, 1995, UNPUB SMOOTHING SPAR
  • [3] [Anonymous], 1994, J COMPUT GRAPH STAT
  • [4] [Anonymous], 1987, AUST J STAT, DOI DOI 10.1111/j.1467-842X.1987.tb00717.x
  • [5] [Anonymous], 1989, STAT ANAL DISCRETE D
  • [6] BURMAN P, 1987, SANKHYA SER A, V49, P24
  • [7] CHENG MY, 1994, BANDWIDTH SELECTOR L
  • [8] A GEOMETRIC COMBINATION ESTIMATOR FOR D-DIMENSIONAL ORDINAL SPARSE CONTINGENCY-TABLES
    DONG, JP
    SIMONOFF, JS
    [J]. ANNALS OF STATISTICS, 1995, 23 (04) : 1143 - 1159
  • [9] ON THE PERFORMANCE OF KERNEL ESTIMATORS FOR HIGH-DIMENSIONAL, SPARSE BINARY DATA
    GRUND, B
    HALL, P
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 44 (02) : 321 - 344
  • [10] STRONG LIMIT-THEOREMS FOR OSCILLATION MODULI OF THE UNIFORM EMPIRICAL PROCESS
    MASON, DM
    SHORACK, GR
    WELLNER, JA
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (01): : 83 - 97