Computational discovery of a large-imine-cage-based porous molecular material and its application in water desalination

被引:7
作者
Bernabei, Marco [1 ]
Perez Soto, Raul [1 ]
Gomez Garcia, Ismael [1 ,2 ]
Haranczyk, Maciej [1 ]
机构
[1] IMDEA Mat Inst, C Eric Kandel 2, Madrid 28096, Spain
[2] Univ Carlos III Madrid, Avda Univ 30, Leganes 28911, Spain
关键词
IN-SILICO DESIGN; ORGANIC CAGE; CRYSTAL; POROSITY; LANDSCAPES; TOOLS;
D O I
10.1039/c9me00018f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous molecular materials based on imine cages are prototyped for applications such as gas separations, water purification and others. Among tens of imine cages that have been synthesized so far, ones supporting large pore materials for high-flux membrane applications are rare due to the natural tendency of atoms and molecules to favor high-density arrangements. Here, we present a computational approach leading to identification of a large rigid imine cage molecule, which is based on 1,3,5-triformylbenzene and adamantane-1,3-diamine precursors. Through density functional theory-based crystal structure prediction, we demonstrate that this cage supports a number of synthetically-accessible porous crystal phases characterized by pore limiting diameters in the range of 3.5-5.5 angstrom. Furthermore, we demonstrate that the new cage molecule also supports a highly porous amorphous phase enabling a high-flux reverse-osmosis membrane application. Our molecular simulation-based investigation of the latter membrane in a water desalination scenario suggests that the new material can offer more than 100% increase in water flux over the benchmark porous Covalent Cage 3 (CC3) material.
引用
收藏
页码:912 / 920
页数:9
相关论文
共 57 条
[1]  
[Anonymous], 2017, MAT SCI SUIT 2017 2
[2]   Integrated modeling program, applied chemical theory (IMPACT) [J].
Banks, JL ;
Beard, HS ;
Cao, YX ;
Cho, AE ;
Damm, W ;
Farid, R ;
Felts, AK ;
Halgren, TA ;
Mainz, DT ;
Maple, JR ;
Murphy, R ;
Philipp, DM ;
Repasky, MP ;
Zhang, LY ;
Berne, BJ ;
Friesner, RA ;
Gallicchio, E ;
Levy, RM .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1752-1780
[3]   Crystal porosity and the burden of proof [J].
Barbour, LJ .
CHEMICAL COMMUNICATIONS, 2006, (11) :1163-1168
[4]   An evolutionary algorithm for the discovery of porous organic cages [J].
Berardo, Enrico ;
Turcani, Lukas ;
Miklitz, Marcin ;
Jelfs, Kim E. .
CHEMICAL SCIENCE, 2018, 9 (45) :8513-8527
[5]   In silico design and assembly of cage molecules into porous molecular materials [J].
Bernabei, Marco ;
Perez-Soto, Raul ;
Gomez Garcia, Ismael ;
Haranczyk, Maciej .
MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2018, 3 (06) :942-950
[6]   Supramolecular Engineering of Intrinsic and Extrinsic Porosity in Covalent Organic Cages [J].
Bojdys, Michael J. ;
Briggs, Michael E. ;
Jones, James T. A. ;
Adams, Dave J. ;
Chong, Samantha Y. ;
Schmidtmann, Marc ;
Cooper, Andrew I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (41) :16566-16571
[7]   Porous Organic Cage Compounds as Highly Potent Affinity Materials for Sensing by Quartz Crystal Microbalances [J].
Brutschy, Malte ;
Schneider, Markus W. ;
Mastalerz, Michael ;
Waldvogel, Siegfried R. .
ADVANCED MATERIALS, 2012, 24 (45) :6049-+
[8]   Nanoporous Organic Polymer/Cage Composite Membranes [J].
Bushell, Alexandra F. ;
Budd, Peter M. ;
Attfield, Martin P. ;
Jones, James T. A. ;
Hasell, Tom ;
Cooper, Andrew I. ;
Bernardo, Paola ;
Bazzarelli, Fabio ;
Clarizia, Gabriele ;
Jansen, Johannes C. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (04) :1253-1256
[9]  
Chen L, 2014, NAT MATER, V13, P954, DOI [10.1038/NMAT4035, 10.1038/nmat4035]
[10]   Role of electrostatic interactions in determining the crystal structures of polar organic molecules. A distributed multipole study [J].
Coombes, DS ;
Price, SL ;
Willock, DJ ;
Leslie, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (18) :7352-7360