h-p spectral element method for elliptic problems on non-smooth domains using parallel computers

被引:22
作者
Tomar, S. K. [1 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
spectral element method; corner singularities; least-squares method; almost optimal preconditioner; exponential accuracy;
D O I
10.1007/s00607-006-0176-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose a new h-p spectral element method to solve elliptic boundary value problems with mixed Neumann and Dirichlet boundary conditions on non-smooth domains. The method is shown to be exponentially accurate and asymptotically faster than the standard h-p finite element method. The spectral element functions are fully non-conforming for pure Dirichlet problems and conforming only at the vertices of the elements for mixed problems, and hence, the dimension of the resulting Schur complement matrix is quite small. The method is a least-squares collocation method and the resulting normal equations are solved using preconditioned conjugate gradient method with an almost optimal preconditioner. The algorithm is suitable for a distributed memory parallel computer. The numerical results of a number of model problems are presented, which confirm the theoretical estimates.
引用
收藏
页码:117 / 143
页数:27
相关论文
共 18 条
[1]  
[Anonymous], DIFFER EQU
[2]   THE P AND H-P VERSIONS OF THE FINITE-ELEMENT METHOD, BASIC PRINCIPLES AND PROPERTIES [J].
BABUSKA, I ;
SURI, M .
SIAM REVIEW, 1994, 36 (04) :578-632
[3]   THE H-P VERSION OF THE FINITE-ELEMENT METHOD FOR DOMAINS WITH CURVED BOUNDARIES [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (04) :837-861
[4]   EFFICIENT PRECONDITIONING FOR THE RHO-VERSION FINITE-ELEMENT METHOD IN 2 DIMENSIONS [J].
BABUSKA, I ;
CRAIG, A ;
MANDEL, J ;
PITKARANTA, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :624-661
[5]   REGULARITY OF THE SOLUTION OF ELLIPTIC PROBLEMS WITH PIECEWISE ANALYTIC DATA .1. BOUNDARY-VALUE PROBLEMS FOR LINEAR ELLIPTIC EQUATION OF 2ND ORDER [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (01) :172-203
[6]  
Babuska I., 1990, NUMER METH PART D E, V6, P371
[7]   THE GALERKIN-COLLOCATION METHOD FOR HYPERBOLIC INITIAL-BOUNDARY VALUE-PROBLEMS [J].
DUTT, P ;
SINGH, AK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 112 (02) :211-225
[9]   Stability estimates for h-p spectral element methods for general elliptic problems on curvilinear domains [J].
Dutt, P ;
Tomar, S .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2003, 113 (04) :395-429
[10]   Stability estimates for h-p spectral element methods for elliptic problems [J].
Dutt, P ;
Tomar, S ;
Kumar, BVR .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2002, 112 (04) :601-639