miR-200 Regulates PDGF-D-Mediated Epithelial-Mesenchymal Transition, Adhesion, and Invasion of Prostate Cancer Cells

被引:259
作者
Kong, Dejuan [1 ]
Li, Yiwei [1 ]
Wang, Zhiwei [1 ]
Banerjee, Sanjeev [1 ]
Ahmad, Aamir [1 ]
Kim, Hyeong-Reh Choi [1 ]
Sarkar, Fazlul H. [1 ]
机构
[1] Wayne State Univ, Sch Med, Karmanos Canc Inst, Dept Pathol, Detroit, MI 48201 USA
关键词
Platelet-derived growth factor-D; Epithelial-Mesenchymal Transition; miR-200; Zinc-finger E-box binding homeobox 1; Snail2; GROWTH-FACTOR-D; NF-KAPPA-B; E-CADHERIN; TGF-BETA; TRANSCRIPTIONAL REPRESSOR; CARCINOMA PROGRESSION; DOWN-REGULATION; ZEB1; FAMILY; ANGIOGENESIS;
D O I
10.1002/stem.101
中图分类号
Q813 [细胞工程];
学科分类号
摘要
MicroRNAs have been implicated in tumor progression. Recent studies have shown that the miR-200 family regulates epithelial-mesenchymal transition (EMT) by targeting zinc-finger E-box binding homeobox 1 (ZEB1) and ZEB2. Emerging evidence from our laboratory and others suggests that the processes of EMT can be triggered by various growth factors, such as transforming growth factor beta and platelet-derived growth factor-D (PDGF-D). Moreover, we recently reported that overexpression of PDGF-D in prostate cancer cells (PC3 PDGF-D cells) leads to the acquisition of the EMT phenotype, and this model offers an opportunity for investigating the molecular interplay between PDGF-D signaling and EMT. Here, we report, for the first time, significant downregulation of the miR-200 family in PC3 PDGF-D cells as well as in PC3 cells exposed to purified active PDGF-D protein, resulting in the upregulation of ZEB1, ZEB2, and Snail2 expression. Interestingly, re-expression of miR-200b in PC3 PDGF-D cells led to reversal of the EMT phenotype, which was associated with the downregulation of ZEB1, ZEB2, and Snail2 expression, and these results were consistent with greater expression levels of epithelial markers. Moreover, transfection of PC3 PDGF-D cells with miR-200b inhibited cell migration and invasion, with concomitant repression of cell adhesion to the culture surface and cell detachment. From these results, we conclude that PDGF-D-induced acquisition of the EMT phenotype in PC3 cells is, in part, a result of repression of miR-200 and that any novel strategy by which miR-200 could be upregulated would become a promising approach for the treatment of invasive prostate cancer. STEM CELLS 2009; 27:1712-1721
引用
收藏
页码:1712 / 1721
页数:10
相关论文
共 39 条
[1]   Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium [J].
Ahmed, N ;
Maines-Bandiera, S ;
Quinn, MA ;
Unger, WG ;
Dedhar, S ;
Auersperg, N .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2006, 290 (06) :C1532-C1542
[2]   The transcription factor ZEB1 (δEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity [J].
Aigner, K. ;
Dampier, B. ;
Descovich, L. ;
Mikula, M. ;
Sultan, A. ;
Schreiber, M. ;
Mikulits, W. ;
Brabletz, T. ;
Strand, D. ;
Obrist, P. ;
Sommergruber, W. ;
Schweifer, N. ;
Wernitznig, A. ;
Beug, H. ;
Foisner, R. ;
Eger, A. .
ONCOGENE, 2007, 26 (49) :6979-6988
[3]   Regulation of vimentin by SIP1 in human epithelial breast tumor cells [J].
Bindels, S. ;
Mestdagt, M. ;
Vandewalle, C. ;
Jacobs, N. ;
Volders, L. ;
Noel, A. ;
van Roy, F. ;
Berx, G. ;
Foidart, J-M ;
Gilles, C. .
ONCOGENE, 2006, 25 (36) :4975-4985
[4]   A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition [J].
Bracken, Cameron P. ;
Gregory, Philip A. ;
Kolesnikoff, Natasha ;
Bert, Andrew G. ;
Wang, Jun ;
Shannon, M. Frances ;
Goodall, Gregory J. .
CANCER RESEARCH, 2008, 68 (19) :7846-7854
[5]   A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells [J].
Burk, Ulrike ;
Schubert, Joerg ;
Wellner, Ulrich ;
Schmalhofer, Otto ;
Vincan, Elizabeth ;
Spaderna, Simone ;
Brabletz, Thomas .
EMBO REPORTS, 2008, 9 (06) :582-589
[6]   Non-coding RNAs take centre stage in epithelial-to-mesenchymal transition [J].
Cano, Amparo ;
Nieto, M. Angela .
TRENDS IN CELL BIOLOGY, 2008, 18 (08) :357-359
[7]   Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis [J].
Christiansen, Jason J. ;
Rajasekaran, Ayyappan K. .
CANCER RESEARCH, 2006, 66 (17) :8319-8326
[8]   NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:: potential involvement of ZEB-1 and ZEB-2 [J].
Chua, H. L. ;
Bhat-Nakshatri, P. ;
Clare, S. E. ;
Morimiya, A. ;
Badve, S. ;
Nakshatri, H. .
ONCOGENE, 2007, 26 (05) :711-724
[9]   DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells [J].
Eger, A ;
Aigner, K ;
Sonderegger, S ;
Dampier, B ;
Oehler, S ;
Schreiber, M ;
Berx, G ;
Cano, A ;
Beug, H ;
Foisner, R .
ONCOGENE, 2005, 24 (14) :2375-2385
[10]   PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression [J].
Fischer, A. N. M. ;
Fuchs, E. ;
Mikula, M. ;
Huber, H. ;
Beug, H. ;
Mikulits, W. .
ONCOGENE, 2007, 26 (23) :3395-3405