Chern-Simons matrix models and Stieltjes-Wigert polynomials

被引:52
作者
Dolivet, Yacine [1 ]
Tierz, Miguel [2 ]
机构
[1] Ecole Normale Super, Lab Phys Theor, 24 Rue Lhomond, F-75231 Paris, France
[2] CSIC, Inst Estudis Espacials Catalunya IEEC, Fac Ciencias, E-08193 Bellaterra, Barcelona, Spain
关键词
D O I
10.1063/1.2436734
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Employing the random matrix formulation of Chern-Simons theory on Seifert manifolds, we show how the Stieltjes-Wigert orthogonal polynomials are useful in exact computations in Chern-Simons matrix models. We construct a biorthogonal extension of the Stieltjes-Wigert polynomials, not available in the literature, necessary to study Chern-Simons matrix models when the geometry is a lens space. We also study the relationship between Stieltjes-Wigert and Rogers-Szego polynomials and the corresponding equivalence with a unitary matrix model. Finally, we give a detailed proof of a result that relates quantum dimensions with averages of Schur polynomials in the Stieltjes-Wigert ensemble. (c) 2007 American Institute of Physics.
引用
收藏
页数:20
相关论文
共 45 条
[1]  
Aganagic M, 2004, J HIGH ENERGY PHYS
[2]   Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings [J].
Aganagic, M ;
Ooguri, H ;
Saulina, N ;
Vafa, C .
NUCLEAR PHYSICS B, 2005, 715 (1-2) :304-348
[3]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[4]  
ALSALAM WA, 1983, PAC J MATH, V108, P1
[5]  
[Anonymous], 1990, COURSE MODERN ANAL
[6]  
[Anonymous], 1894, ANN FS TOULOUSE
[7]   Phase transitions in q-deformed 2D Yang-Mills theory and topological strings -: art. no. 026005 [J].
Arsiwalla, X ;
Boels, R ;
Mariño, M ;
Sinkovics, A .
PHYSICAL REVIEW D, 2006, 73 (02)
[8]   LIMITS OF SOME Q-LAGUERRE POLYNOMIALS [J].
ASKEY, R .
JOURNAL OF APPROXIMATION THEORY, 1986, 46 (03) :213-216
[9]   ON THE ROGERS-SZEGO POLYNOMIALS [J].
ATAKISHIYEV, NM ;
NAGIYEV, SM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (17) :L611-L615
[10]   Biorthogonal ensembles [J].
Borodin, A .
NUCLEAR PHYSICS B, 1998, 536 (03) :704-732