Neighboring Extremal Solution for Nonlinear Discrete-Time Optimal Control Problems With State Inequality Constraints

被引:24
作者
Ghaemi, Reza [1 ,2 ]
Sun, Jing [1 ,2 ]
Kolmanovsky, Ilya V. [3 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Naval Architecture & Marine Engn, Ann Arbor, MI 48109 USA
[3] Ford Motor Co, Dearborn, MI 48124 USA
关键词
Model predictive control (MPC); neighboring extremal (NE); optimal control;
D O I
10.1109/TAC.2009.2031576
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A neighboring extremal control method is proposed for discrete-time optimal control problems subject to a general class of inequality constraints. The approach is applicable to a broad class of systems with input and state constraints, including two special cases where the constraints depend only on states but not inputs and the constraints are over determined. A closed form solution for the neighboring extremal control is provided and a sufficient condition for existence of the neighboring extremal solution is specified.
引用
收藏
页码:2674 / 2679
页数:6
相关论文
共 18 条
[1]  
ALLGOWER F, 2007, ASSESSMENT FUTURE DI
[2]  
BORBOW JE, 2006, LECT NOTES CONTROL I, V340
[3]  
Breakwell J.V., 1965, INT J ENG SCI, V2, P565, DOI [10.1016/0020-7225(65)90037-6, DOI 10.1016/0020-7225(65)90037-6]
[4]  
Breakwell J. V., 1963, SIAM J CONTROL, V1, P193, DOI DOI 10.1137/0301011
[5]  
Bryson A. E., 2018, Applied Optimal Control: Optimization, Estimation and Control
[6]  
Buskens C., 2001, ONLINE OPTIMIZATION
[7]   Efficient sequential quadratic programming implementations for equality-constrained discrete-time optimal control [J].
Dohrmann, CR ;
Robinett, RD .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 95 (02) :323-346
[8]  
FERREAU HJ, 2006, P 1 IFAC WORKSH NMPC
[9]  
FIACCO A, 1983, MATH SCI ENG
[10]  
GHAEMI R, 2007, P 46 IEEE C DEC CONT