Low-loss single-photon NbN microwave resonators on Si

被引:28
作者
Carter, Faustin W. [1 ,2 ]
Khaire, Trupti [3 ]
Chang, Clarence [1 ,2 ]
Novosad, Valentyn [3 ]
机构
[1] Argonne Natl Lab, High Energy Phys Div, Lemont, IL 60559 USA
[2] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60559 USA
关键词
D O I
10.1063/1.5115276
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present coplanar waveguide (CPW) microwave resonators with exceptionally low loss produced from NbN sputtered on Si. The NbN films are deposited with a modest RF substrate bias during reactive DC magnetron sputtering at a substrate temperature of 250 degrees C and can achieve a critical temperature as high as 15 K depending on the N-2 flow rate. We measure the internal quality factors (Q(i)) of two such resonators at high-powers near saturation and report high-power quality factors in excess of 1.2 x 10(6) at 200 mK and 3.5 x 10(5) at 2 K. We also measure the temperature-dependent frequency shift at high power levels and the quality factor at single-photon power levels. From these measurements, we find a low-power (average photon number less than one) Q(i) value of 4.2 x 10(5) at 200 mK, which is consistent with a system limited by two-level-system loss.
引用
收藏
页数:5
相关论文
共 29 条
[1]   Intermodulation gain in nonlinear NbN superconducting microwave resonators [J].
Abdo, B ;
Segev, E ;
Shtempluck, O ;
Buks, E .
APPLIED PHYSICS LETTERS, 2006, 88 (02) :1-3
[2]   Tunable superconducting microstrip resonators [J].
Adamyan, A. A. ;
Kubatkin, S. E. ;
Danilov, A. V. .
APPLIED PHYSICS LETTERS, 2016, 108 (17)
[3]   Superconducting microwave parametric amplifier based on a quasi-fractal slow propagation line [J].
Adamyan, A. A. ;
de Graaf, S. E. ;
Kubatkin, S. E. ;
Danilov, A. V. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (08)
[4]   Terahertz response of NbN-based microwave kinetic inductance detectors with rewound spiral resonator [J].
Ariyoshi, S. ;
Nakajima, K. ;
Saito, A. ;
Taino, T. ;
Otani, C. ;
Yamada, H. ;
Ohshima, S. ;
Bae, J. ;
Tanaka, S. .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2016, 29 (03)
[5]   NbN-Based Microwave Kinetic Inductance Detector with a Rewound Spiral Resonator for Broadband Terahertz Detection [J].
Ariyoshi, Seiichiro ;
Nakajima, Kensuke ;
Saito, Atsushi ;
Taino, Tohru ;
Tanoue, Hiroyuki ;
Koga, Kensuke ;
Furukawa, Noboru ;
Yamada, Hironobu ;
Ohshima, Shigetoshi ;
Otani, Chiko ;
Bae, Jongsuck .
APPLIED PHYSICS EXPRESS, 2013, 6 (06)
[6]   Minimal resonator loss for circuit quantum electrodynamics [J].
Barends, R. ;
Vercruyssen, N. ;
Endo, A. ;
de Visser, P. J. ;
Zijlstra, T. ;
Klapwijk, T. M. ;
Diener, P. ;
Yates, S. J. C. ;
Baselmans, J. J. A. .
APPLIED PHYSICS LETTERS, 2010, 97 (02)
[7]   Low-Loss Superconducting Nanowire Circuits Using a Neon Focused Ion Beam [J].
Burnett, J. ;
Sagar, J. ;
Kennedy, O. W. ;
Warburton, P. A. ;
Fenton, J. C. .
PHYSICAL REVIEW APPLIED, 2017, 8 (01)
[8]   Scraps: An Open-Source Python-Based Analysis Package for Analyzing and Plotting Superconducting Resonator Data [J].
Carter F.W. ;
Khaire T.S. ;
Novosad V. ;
Chang C.L. .
IEEE Transactions on Applied Superconductivity, 2017, 27 (04)
[9]   Bias sputtered NbN and superconducting nanowire devices [J].
Dane, Andrew E. ;
McCaughan, Adam N. ;
Zhu, Di ;
Zhao, Qingyuan ;
Kim, Chung-Soo ;
Calandri, Niccolo ;
Agarwal, Akshay ;
Bellei, Francesco ;
Berggren, Karl K. .
APPLIED PHYSICS LETTERS, 2017, 111 (12)
[10]   Terahertz superconducting hot electron bolometer heterodyne receivers [J].
Gao, J. R. ;
Hajenius, M. ;
Yang, Z. Q. ;
Baselmans, J. J. A. ;
Khosropanah, P. ;
Barends, R. ;
Klapwijk, T. M. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) :252-258