First-Principles Models for van der Waals Interactions in Molecules and Materials: Concepts, Theory, and Applications

被引:482
作者
Hermann, Jan [1 ]
DiStasio, Robert A., Jr. [2 ]
Tkatchenko, Alexandre [1 ,3 ]
机构
[1] Fritz Haber Inst Max Planck Gesell, Faradayweg 4-6, D-14195 Berlin, Germany
[2] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[3] Univ Luxembourg, Phys & Mat Sci Res Unit, L-1511 Luxembourg, Luxembourg
基金
欧洲研究理事会;
关键词
DENSITY-FUNCTIONAL-THEORY; RANDOM-PHASE-APPROXIMATION; GENERALIZED GRADIENT APPROXIMATION; LONDON DISPERSION; INTERACTION ENERGIES; NONCOVALENT INTERACTIONS; BENCHMARK CALCULATIONS; ELECTRON CORRELATION; DIELECTRIC-CONSTANT; PERTURBATION-THEORY;
D O I
10.1021/acs.chemrev.6b00446
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Noqcovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and material's science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and, present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation dissipation (ACFD) theorem (namely the Rutgers-Chalmers vdW-DF, Vydrov-Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko-Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological) practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.
引用
收藏
页码:4714 / 4758
页数:45
相关论文
共 345 条
[1]   QUANTUM THEORY OF DIELECTRIC CONSTANT IN REAL SOLIDS [J].
ADLER, SL .
PHYSICAL REVIEW, 1962, 126 (02) :413-+
[2]   Long-range van der Waals interactions in density functional theory [J].
Alonso, J. A. ;
Mananes, A. .
THEORETICAL CHEMISTRY ACCOUNTS, 2007, 117 (04) :467-472
[3]   Adsorption of Rare-Gas Atoms and Water on Graphite and Graphene by van der Waals-Corrected Density Functional Theory [J].
Ambrosetti, A. ;
Silvestrelli, P. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (09) :3695-3702
[4]   Wavelike charge density fluctuations and van der Waals interactions at the nanoscale [J].
Ambrosetti, Alberto ;
Ferri, Nicola ;
DiStasio, Robert A., Jr. ;
Tkatchenko, Alexandre .
SCIENCE, 2016, 351 (6278) :1171-1176
[5]   Hard Numbers for Large Molecules: Toward Exact Energetics for Supramolecular Systems [J].
Ambrosetti, Alberto ;
Alfe, Dario ;
DiStasio, Robert A., Jr. ;
Tkatchenko, Alexandre .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (05) :849-855
[6]   Long-range correlation energy calculated from coupled atomic response functions [J].
Ambrosetti, Alberto ;
Reilly, Anthony M. ;
DiStasio, Robert A., Jr. ;
Tkatchenko, Alexandre .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18)
[7]   van der Waals interactions in density-functional theory [J].
Andersson, Y ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 1996, 76 (01) :102-105
[8]   Calculating dispersion interactions using maximally localized Wannier functions [J].
Andrinopoulos, Lampros ;
Hine, Nicholas D. M. ;
Mostofi, Arash A. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (15)
[9]   On the exchange-hole model of London dispersion forces [J].
Angyan, Janos G. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (02)
[10]   Correlation Energy Expressions from the Adiabatic-Connection Fluctuation-Dissipation Theorem Approach [J].
Angyan, Janos G. ;
Liu, Ru-Fen ;
Toulouse, Julien ;
Jansen, Georg .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (10) :3116-3130