Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance

被引:84
|
作者
Zhu, Min [1 ]
Zhou, Meixue [1 ]
Shabala, Lana [1 ]
Shabala, Sergey [1 ]
机构
[1] Univ Tasmania, Sch Land & Food, Private Bag 54, Hobart, Tas 7001, Australia
来源
PLANT CELL AND ENVIRONMENT | 2017年 / 40卷 / 07期
关键词
ABA; CCC transporter; H2O2; NADPH oxidase; SKOR; SOS1; xylem sodium loading; NONSELECTIVE CATION CHANNELS; PLASMA-MEMBRANE TRANSPORTERS; HIGH-AFFINITY POTASSIUM; SALT TOLERANCE; K+ TRANSPORT; HYDROXYL RADICALS; SODIUM-TRANSPORT; IONIC RELATIONS; ABSCISIC-ACID; BREAD WHEAT;
D O I
10.1111/pce.12727
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Time-dependent kinetics of xylem Na+ loading was investigated using a large number of barley genotypes contrasting in their salinity tolerance. Salt-sensitive varieties were less efficient in controlling xylem Na+ loading and showed a gradual increase in the xylem Na+ content over the time. To understand underlying ionic and molecular mechanisms, net fluxes of Ca2+, K+ and Na+ were measured from the xylem parenchyma tissue in response to H2O2 and ABA; both of them associated with salinity stress signalling. Our results indicate that NADPH oxidase-mediated apoplastic H2O2 production acts upstream of the xylem Na+ loading and is causally related to ROS-inducible Ca2+ uptake systems in the root stelar tissue. It was also found that ABA regulates (directly or indirectly) the process of Na+ retrieval from the xylem and the significant reduction of Na+ and K+ fluxes induced by bumetanide are indicative of a major role of chloride cation co-transporter (CCC) on xylem ion loading. Transcript levels of HvHKT1; 5_like and HvSOS1_like genes in the root stele were observed to decrease after salt stress, while there was an increase in HvSKOR_like gene, indicating that these ion transporters are involved in primary Na+/K+ movement into/out of xylem.
引用
收藏
页码:1009 / 1020
页数:12
相关论文
共 50 条
  • [41] Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses
    Abhishek Singh
    Vishnu D. Rajput
    Shivani Lalotra
    Shreni Agrawal
    Karen Ghazaryan
    Jagpreet Singh
    Tatiana Minkina
    Priyadarshani Rajput
    Saglara Mandzhieva
    Athanasios Alexiou
    Environmental Geochemistry and Health, 2024, 46
  • [42] Tissue-Specific Regulation of Na+ and K+ Transporters Explains Genotypic Differences in Salinity Stress Tolerance in Rice
    Liu, Juan
    Shabala, Sergey
    Shabala, Lana
    Zhou, Meixue
    Meinke, Holger
    Venkataraman, Gayatri
    Chen, Zhonghua
    Zeng, Fanrong
    Zhao, Quanzhi
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [43] Identification of Rice Accessions Associated with K+/Na+ Ratio and Salt Tolerance Based on Physiological and Molecular Responses
    Reddy, Inja Naga Bheema Lingeswara
    Kim, Sung-Mi
    Kim, Beom-Ki
    Yoon, In-Sun
    Kwon, Taek-Ryoun
    RICE SCIENCE, 2017, 24 (06) : 360 - 364
  • [44] Trehalose: a promising osmo-protectant against salinity stress—physiological and molecular mechanisms and future prospective
    Muhammad Nawaz
    Muhammad Umair Hassan
    Muhammad Umer Chattha
    Athar Mahmood
    Adnan Noor Shah
    Mohamed Hashem
    Saad Alamri
    Maria Batool
    Adnan Rasheed
    Maryam A. Thabit
    Haifa A. S. Alhaithloul
    Sameer H. Qari
    Molecular Biology Reports, 2022, 49 : 11255 - 11271
  • [45] Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley
    Ghabooli, Mehdi
    Khatabi, Behnam
    Ahmadi, Farajolah Shahriary
    Sepehri, Mozhgan
    Mirzaei, Mehdi
    Amirkhani, Ardeshir
    Jorrin-Novo, Jesus V.
    Salekdeh, Ghasem Hosseini
    JOURNAL OF PROTEOMICS, 2013, 94 : 289 - 301
  • [46] High Temperature Stress Tolerance in Maize (Zea mays L.): Physiological and Molecular Mechanisms
    Tiwari, Yogesh Kumar
    Yadav, Sushil Kumar
    JOURNAL OF PLANT BIOLOGY, 2019, 62 (02) : 93 - 102
  • [47] High Temperature Stress Tolerance in Maize (Zea mays L.): Physiological and Molecular Mechanisms
    Yogesh Kumar Tiwari
    Sushil Kumar Yadav
    Journal of Plant Biology, 2019, 62 : 93 - 102
  • [48] Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms
    Ho, William Wing Ho
    Hill, Camilla B.
    Doblin, Monika S.
    Shelden, Megan C.
    van de Meene, Allison
    Rupasinghe, Thusitha
    Bacic, Antony
    Roessner, Ute
    PLANT COMMUNICATIONS, 2020, 1 (03)
  • [49] Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms
    Mohammadreza Neshat
    Alireza Abbasi
    Abdulhadi Hosseinzadeh
    Mohammad Reza Sarikhani
    Davood Dadashi Chavan
    Abdolrahman Rasoulnia
    Physiology and Molecular Biology of Plants, 2022, 28 : 347 - 361
  • [50] Plant growth promoting bacteria (PGPR) induce antioxidant tolerance against salinity stress through biochemical and physiological mechanisms
    Neshat, Mohammadreza
    Abbasi, Alireza
    Hosseinzadeh, Abdulhadi
    Sarikhani, Mohammad Reza
    Chavan, Davood Dadashi
    Rasoulnia, Abdolrahman
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (02) : 347 - 361