Physiological and molecular mechanisms mediating xylem Na+ loading in barley in the context of salinity stress tolerance

被引:84
|
作者
Zhu, Min [1 ]
Zhou, Meixue [1 ]
Shabala, Lana [1 ]
Shabala, Sergey [1 ]
机构
[1] Univ Tasmania, Sch Land & Food, Private Bag 54, Hobart, Tas 7001, Australia
来源
PLANT CELL AND ENVIRONMENT | 2017年 / 40卷 / 07期
关键词
ABA; CCC transporter; H2O2; NADPH oxidase; SKOR; SOS1; xylem sodium loading; NONSELECTIVE CATION CHANNELS; PLASMA-MEMBRANE TRANSPORTERS; HIGH-AFFINITY POTASSIUM; SALT TOLERANCE; K+ TRANSPORT; HYDROXYL RADICALS; SODIUM-TRANSPORT; IONIC RELATIONS; ABSCISIC-ACID; BREAD WHEAT;
D O I
10.1111/pce.12727
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Time-dependent kinetics of xylem Na+ loading was investigated using a large number of barley genotypes contrasting in their salinity tolerance. Salt-sensitive varieties were less efficient in controlling xylem Na+ loading and showed a gradual increase in the xylem Na+ content over the time. To understand underlying ionic and molecular mechanisms, net fluxes of Ca2+, K+ and Na+ were measured from the xylem parenchyma tissue in response to H2O2 and ABA; both of them associated with salinity stress signalling. Our results indicate that NADPH oxidase-mediated apoplastic H2O2 production acts upstream of the xylem Na+ loading and is causally related to ROS-inducible Ca2+ uptake systems in the root stelar tissue. It was also found that ABA regulates (directly or indirectly) the process of Na+ retrieval from the xylem and the significant reduction of Na+ and K+ fluxes induced by bumetanide are indicative of a major role of chloride cation co-transporter (CCC) on xylem ion loading. Transcript levels of HvHKT1; 5_like and HvSOS1_like genes in the root stele were observed to decrease after salt stress, while there was an increase in HvSKOR_like gene, indicating that these ion transporters are involved in primary Na+/K+ movement into/out of xylem.
引用
收藏
页码:1009 / 1020
页数:12
相关论文
共 50 条
  • [1] Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance
    Ishikawa, Tetsuya
    Shabala, Sergey
    PHYSIOLOGIA PLANTARUM, 2019, 165 (03) : 619 - 631
  • [2] Physiological and biochemical mechanisms of salt tolerance in barley under salinity stress
    Abdelrady, Wessam A.
    Ma, Zhengxin
    Elshawy, Elsayed E.
    Wang, Lanlan
    Askri, Syed Muhammad Hassan
    Ibrahim, Zakir
    Dennis, Elvis
    Kanwal, Farah
    Zeng, Fanrong
    Shamsi, Imran Haider
    PLANT STRESS, 2024, 11
  • [3] Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density
    Shabala, Sergey
    Hariadi, Yuda
    Jacobsen, Sven-Erik
    JOURNAL OF PLANT PHYSIOLOGY, 2013, 170 (10) : 906 - 914
  • [4] Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance
    Vera-Estrella, R
    Barkla, BJ
    García-Ramírez, L
    Pantoja, O
    PLANT PHYSIOLOGY, 2005, 139 (03) : 1507 - 1517
  • [5] Physiological and Molecular Responses of Barley Genotypes to Salinity Stress
    Jadidi, Omid
    Etminan, Alireza
    Azizi-Nezhad, Reza
    Ebrahimi, Asa
    Pour-Aboughadareh, Alireza
    GENES, 2022, 13 (11)
  • [6] Physiological and molecular mechanisms of salinity tolerance in grafted cucumber
    Elsheery, Nabil, I
    Helaly, Mohamed N.
    Omar, Samar A.
    John, Sunoj V. S.
    Zabochnicka-Swiatek, Magdalena
    Kalaji, Hazem M.
    Rastogi, Anshu
    SOUTH AFRICAN JOURNAL OF BOTANY, 2020, 130 : 90 - 102
  • [7] Salinity stress inhibits calcium loading into the xylem of excised barley (Hordeum vulgare) roots
    Halperin, SJ
    Kochian, LV
    Lynch, JP
    NEW PHYTOLOGIST, 1997, 135 (03) : 419 - 427
  • [8] MECHANISMS OF TOLERANCE TO SALINITY IN BANANA: PHYSIOLOGICAL, BIOCHEMICAL, AND MOLECULAR ASPECTS
    Wiladino, Lilia
    Camara, Terezinha Rangel
    Ribeiro, Marta Barbosa
    Jordao Do Amaral, Daniel Oliveira
    Suassuna, Flavia
    Da Silva, Marcia Vanusa
    REVISTA BRASILEIRA DE FRUTICULTURA, 2017, 39 (02)
  • [9] Bermudagrass Responses and Tolerance to Salt Stress by the Physiological, Molecular Mechanisms and Proteomic Perspectives of Salinity Adaptation
    Noor, Maryam
    Fan, Ji-Biao
    Zhang, Jing-Xue
    Zhang, Chuan-Jie
    Sun, Sheng-Nan
    Gan, Lu
    Yan, Xue-Bing
    AGRONOMY-BASEL, 2023, 13 (01):
  • [10] Understanding the physiological and molecular mechanism of salinity stress tolerance in plants
    Anwar, Ali
    Zhang, Shu
    He, Lilong
    Gao, Jianwei
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2022, 50 (04)