Large-scale molecular dynamics simulations of particulate ejection and Richtmyer-Meshkov instability development in shocked copper

被引:19
作者
Germann, T. C. [1 ]
Dimonte, G. [1 ]
Hammerberg, J. E. [1 ]
Kadau, K. [1 ]
Quenneville, J. [1 ]
Zellner, M. B. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
来源
DYMAT 2009: 9TH INTERNATIONAL CONFERENCE ON THE MECHANICAL AND PHYSICAL BEHAVIOUR OF MATERIALS UNDER DYNAMIC LOADING, VOL 2 | 2009年
关键词
VIEW;
D O I
10.1051/dymat/2009212
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the results of recent large-scale, non-equilibrium molecular dynamics (NEMD) simulations of shock-induced surface instability development. We consider single crystal Cu described by an embedded atom method potential and driven by a shock wave along the [I I I] crystallographic direction, impinging upon a roughened Cu/vacuum or Cu/Ne interface. The NEMD simulation cell is a quasi-2D 2.23 mu m x 5.67 mu m slab geometry, 1.5 nm thick in the (periodic) third dimension. The first third of the sample length (1.89 mu m) is occupied by Cu (530 million atoms), and the remainder either empty vacuum or Ne gas (195 million atoms). The Cu/Ne (or Cu/vacuum) interface has an initial perturbation with average amplitude 30 nm and dominant wavelength of 0.74 mu m. A shock wave is created by driving the front end of the Cu slab at a fixed particle velocity u(p) = 2.0 to 3.5 km/s. Single-mode and multi-mode interfaces were considered using 212,992 CPUs of the LLNL BlueGene/L supercomputer for times on the order of 1 ns. The higher particle velocities studied here span shock Hugoniot and release states from solid to liquid, including the fluid-solid mixed phase.
引用
收藏
页码:1499 / 1505
页数:7
相关论文
共 24 条
[1]  
Asay J. R., 1978, SAND781256
[2]  
Asay J. R., 1976, SAND760542
[3]   EJECTION OF MATERIAL FROM SHOCKED SURFACES [J].
ASAY, JR ;
MIX, LP ;
PERRY, FC .
APPLIED PHYSICS LETTERS, 1976, 29 (05) :284-287
[4]   Dynamic comparisons of piezoelectric ejecta diagnostics [J].
Buttler, W. T. ;
Zellner, M. B. ;
Olson, R. T. ;
Rigg, P. A. ;
Hixson, R. S. ;
Hammerberg, J. E. ;
Obst, A. W. ;
Payton, J. R. ;
Iverson, A. ;
Young, J. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[5]   Method to separate and determine the amount of ejecta produced in a second-shock material-fragmentation event [J].
Buttler, W. T. ;
Hixson, R. S. ;
King, N. S. P. ;
Olson, R. T. ;
Rigg, P. A. ;
Zellner, M. B. ;
Routley, N. ;
Rimmer, A. .
APPLIED PHYSICS LETTERS, 2007, 90 (15)
[6]   Dynamics simulation of ejection of metal under a shock wave [J].
Chen, J ;
Jing, FQ ;
Zhang, JL ;
Chen, DQ ;
Wang, JH .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (44) :10833-10837
[7]  
Germann TC, 2004, AIP CONF PROC, V706, P285, DOI 10.1063/1.1780236
[8]   Dislocation structure behind a shock front in Fcc perfect crystals: Atomistic simulation results [J].
Germann, TC ;
Tanguy, D ;
Holian, BL ;
Lomdahl, PS ;
Mareschal, M ;
Ravelo, R .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2004, 35A (09) :2609-2615
[9]  
GLOSLI JN, 2007, 2007 ACM IEEE C SUP
[10]   Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J].
Holian, BL ;
Lomdahl, PS .
SCIENCE, 1998, 280 (5372) :2085-2088