Denoising PET images for proton therapy using a residual U-net

被引:14
|
作者
Sano, Akira [1 ,2 ]
Nishio, Teiji [1 ,3 ]
Masuda, Takamitsu [1 ]
Karasawa, Kumiko [4 ]
机构
[1] Tokyo Womens Med Univ, Grad Sch Med, Dept Med Phys, Shinjuku Ku, 8-1 Kawadacho, Tokyo 1628666, Japan
[2] Mizuho Informat & Res Inst Inc, Chiyoda Ku, 2-3 Kanda Nishikicho, Tokyo 1018443, Japan
[3] Osaka Univ, Grad Sch Med, Div Hlth Sci, Med Phys Lab, 1-7 Yamadaoka, Suita, Osaka 5650871, Japan
[4] Tokyo Womens Med Univ, Sch Med, Dept Radiat Oncol, Shinjuku Ku, 8-1 Kawadacho, Tokyo 1628666, Japan
关键词
proton therapy; PET imaging; range verification; denoising; convolutional neural network; VERIFICATION;
D O I
10.1088/2057-1976/abe33c
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The use of proton therapy has the advantage of high dose concentration as it is possible to concentrate the dose on the tumor while suppressing damage to the surrounding normal organs. However, the range uncertainty significantly affects the actual dose distribution in the vicinity of the proton range, limiting the benefit of proton therapy for reducing the dose to normal organs. By measuring the annihilation gamma rays from the produced positron emitters, it is possible to obtain a proton induced positron emission tomography (pPET) image according to the irradiation region of the proton beam. Smoothing with a Gaussian filter is generally used to denoise PET images; however, this approach lowers the spatial resolution. Furthermore, other conventional smoothing processing methods may deteriorate the steep region of the pPET images. In this study, we proposed a denoising method based on a Residual U-Net for pPET images. We conducted the Monte Carlo simulation and irradiation experiment on a human phantom to obtain pPET data. The accuracy of the range estimation and the image similarity were evaluated for pPET images using the Residual U-Net, a Gaussian filter, a median filter, the block-matching and 3D-filtering (BM3D), and a total variation (TV) filter. Usage of the Residual U-Net yielded effective results corresponding to the range estimation; however, the results of peak-signal-to-noise ratio were identical to those for the Gaussian filter, median filter, BM3D, and TV filter. The proposed method can contribute to improving the accuracy of treatment verification and shortening the PET measurement time.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Exudate Detection with Improved U-Net Using Fundus Images
    Mohan, N. Jagan
    Murugan, R.
    Goel, Tripti
    Roy, Parthapratim
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 560 - 564
  • [42] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [43] Feature Loss after Denoising of SPECT Projection Data using a U-Net
    Reymann, Maximilian P.
    Massanes, Francesc
    Ritt, Philipp
    Cachovan, Michal
    Kuwert, Torsten
    Vija, A. Hans
    Maier, Andreas
    2020 IEEE Nuclear Science Symposium and Medical Imaging Conference, NSS/MIC 2020, 2020,
  • [44] Seismic Signal Denoising using U-Net in the Time-Frequency Domain
    Chirtu, Mihail-Antonio
    Radoi, Anamaria
    2022 45TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING, TSP, 2022, : 6 - 10
  • [45] Road Extraction by Deep Residual U-Net
    Zhang, Zhengxin
    Liu, Qingjie
    Wang, Yunhong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (05) : 749 - 753
  • [46] Image denoising method based on deep learning using improved U-net
    Han J.
    Choi J.
    Lee C.
    IEIE Transactions on Smart Processing and Computing, 2021, 10 (04): : 291 - 295
  • [47] LOW DOSE CBCT DENOISING USING A 3D U-NET
    Yunker, A. Austin
    Kettimuthu, B. Rajkumar
    Roeske, C. John C.
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024, 2024, : 85 - 86
  • [48] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [49] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    Expert Systems with Applications, 2021, 185
  • [50] RGB-NIR Demosaicing Using Deep Residual U-Net
    Shopovska, Ivana
    Jovanov, Ljubomir
    Philips, Wilfried
    2018 26TH TELECOMMUNICATIONS FORUM (TELFOR), 2018, : 297 - 300