Denoising PET images for proton therapy using a residual U-net

被引:14
作者
Sano, Akira [1 ,2 ]
Nishio, Teiji [1 ,3 ]
Masuda, Takamitsu [1 ]
Karasawa, Kumiko [4 ]
机构
[1] Tokyo Womens Med Univ, Grad Sch Med, Dept Med Phys, Shinjuku Ku, 8-1 Kawadacho, Tokyo 1628666, Japan
[2] Mizuho Informat & Res Inst Inc, Chiyoda Ku, 2-3 Kanda Nishikicho, Tokyo 1018443, Japan
[3] Osaka Univ, Grad Sch Med, Div Hlth Sci, Med Phys Lab, 1-7 Yamadaoka, Suita, Osaka 5650871, Japan
[4] Tokyo Womens Med Univ, Sch Med, Dept Radiat Oncol, Shinjuku Ku, 8-1 Kawadacho, Tokyo 1628666, Japan
关键词
proton therapy; PET imaging; range verification; denoising; convolutional neural network; VERIFICATION;
D O I
10.1088/2057-1976/abe33c
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The use of proton therapy has the advantage of high dose concentration as it is possible to concentrate the dose on the tumor while suppressing damage to the surrounding normal organs. However, the range uncertainty significantly affects the actual dose distribution in the vicinity of the proton range, limiting the benefit of proton therapy for reducing the dose to normal organs. By measuring the annihilation gamma rays from the produced positron emitters, it is possible to obtain a proton induced positron emission tomography (pPET) image according to the irradiation region of the proton beam. Smoothing with a Gaussian filter is generally used to denoise PET images; however, this approach lowers the spatial resolution. Furthermore, other conventional smoothing processing methods may deteriorate the steep region of the pPET images. In this study, we proposed a denoising method based on a Residual U-Net for pPET images. We conducted the Monte Carlo simulation and irradiation experiment on a human phantom to obtain pPET data. The accuracy of the range estimation and the image similarity were evaluated for pPET images using the Residual U-Net, a Gaussian filter, a median filter, the block-matching and 3D-filtering (BM3D), and a total variation (TV) filter. Usage of the Residual U-Net yielded effective results corresponding to the range estimation; however, the results of peak-signal-to-noise ratio were identical to those for the Gaussian filter, median filter, BM3D, and TV filter. The proposed method can contribute to improving the accuracy of treatment verification and shortening the PET measurement time.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Extension and validation of an analytical model for in vivo PET verification of proton therapy-a phantom and clinical study [J].
Attanasi, F. ;
Knopf, A. ;
Parodi, K. ;
Paganetti, H. ;
Bortfeld, T. ;
Rosso, V. ;
Del Guerra, A. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (16) :5079-5098
[2]   Dynamic Positron Emission Tomography Image Restoration via a Kinetics-Induced Bilateral Filter [J].
Bian, Zhaoying ;
Huang, Jing ;
Ma, Jianhua ;
Lu, Lijun ;
Niu, Shanzhou ;
Zeng, Dong ;
Feng, Qianjin ;
Chen, Wufan .
PLOS ONE, 2014, 9 (02)
[3]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[4]   Non-Local Means Denoising of Dynamic PET Images [J].
Duna, Joyita ;
Leahy, Richard M. ;
Li, Quanzheng .
PLOS ONE, 2013, 8 (12)
[5]   Online proton therapy monitoring: clinical test of a Silicon-photodetector-based in-beam PET [J].
Ferrero, Veronica ;
Fiorina, Elisa ;
Morrocchi, Matteo ;
Pennazio, Francesco ;
Baroni, Guido ;
Battistoni, Giuseppe ;
Belcari, Nicola ;
Camarlinghi, Niccolo ;
Ciocca, Mario ;
Del Guerra, Alberto ;
Donetti, Marco ;
Giordanengo, Simona ;
Giraudo, Giuseppe ;
Patera, Vincenzo ;
Peroni, Cristiana ;
Rivetti, Angelo ;
Rolo, Manuel Dionisio da Rocha ;
Rossi, Sandro ;
Rosso, Valeria ;
Sportelli, Giancarlo ;
Tampellini, Sara ;
Valvo, Francesca ;
Wheadon, Richard ;
Cerello, Piergiorgio ;
Bisogni, Maria Giuseppina .
SCIENTIFIC REPORTS, 2018, 8
[6]  
Gondara L, 2016, 2016 IEEE 16 INT C D, DOI [DOI 10.1109/ICDMW.2016.102, 10.1109/ICDMW.2016.0041, DOI 10.1109/ICDMW.2016.0041]
[7]   PET Image Denoising Using a Deep Neural Network Through Fine Tuning [J].
Gong, Kuang ;
Guan, Jiahui ;
Liu, Chih-Chieh ;
Qi, Jinyi .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) :153-161
[8]   Dynamic PET Image Denoising Using Deep Convolutional Neural Networks Without Prior Training Datasets [J].
Hashimoto, Fumio ;
Ohba, Hiroyuki ;
Ote, Kibo ;
Teramoto, Atsushi ;
Tsukada, Hideo .
IEEE ACCESS, 2019, 7 :96594-96603
[9]   Medical image denoising using convolutional neural network: a residual learning approach [J].
Jifara, Worku ;
Jiang, Feng ;
Rho, Seungmin ;
Cheng, Maowei ;
Liu, Shaohui .
JOURNAL OF SUPERCOMPUTING, 2019, 75 (02) :704-718
[10]   In vivo proton range verification: a review [J].
Knopf, Antje-Christin ;
Lomax, Antony .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (15) :131-160