On h-convexity

被引:446
作者
Varosanec, Sanja [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 1000, Croatia
关键词
convex function; P-function; Godunova-Levin function; s-convex function; h-convex function; Schur's inequality;
D O I
10.1016/j.jmaa.2006.02.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a class of h-convex functions which generalize convex, s-convex, Godunova-Levin functions and P-functions. Namely, the h-convex function is defined as a non-negative function f:J -> R which satisfies f (alpha x + (1-alpha)y) <= h(alpha) f (x) + h (1-alpha) f (y), where h is a non-negative function, a E (0, 1) and x, y epsilon J. Some properties of h-convex functions are discussed. Also, the Schur-type inequality is given. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:303 / 311
页数:9
相关论文
共 10 条
[1]  
[Anonymous], 1985, VYCISLITEL MAT FIZ M
[2]  
[Anonymous], CLASSICAL NEW INEQUA
[3]  
BRECKNER W. W., 1978, Publ. Inst. Math. (Beograd), V23, P13
[4]  
Dragomir S. S., 1995, Soochow J Math, V21, P335
[5]  
Hudzik H., 1994, Aequationes Math, V48, P100, DOI DOI 10.1007/BF01837981
[6]  
Mitrinovic D. S., 1970, Analytic Inequalities, V1
[7]  
Mitrinovie D. S., 1990, Math. Acad. Sci. Soc. R. Can., V12, P33
[8]   P-functions, quasi-convex functions, and Hadamard-type inequalities [J].
Pearce, CEM ;
Rubinov, AM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) :92-104
[9]  
TSENG KL, 2003, PGMIA RES REP COLL, V6
[10]  
Wright, 1956, MATH GAZ, V40, P217, DOI DOI 10.2307/3608827