Surface-area-controlled synthesis of porous TiO2 thin films for gas-sensing applications

被引:30
作者
Park, Jae Young [1 ]
Kim, Ho-hyoung [1 ]
Rana, Dolly [2 ]
Jamwal, Deepika [2 ]
Katoch, Akash [3 ]
机构
[1] Korea Inst Ind Technol KITECH, Surface R&D Grp, 156 Gaetbeol Ro, Incheon 21999, South Korea
[2] Shoolini Univ, Fac Basic Sci, Sch Chem, Solan 173212, HP, India
[3] Indian Inst Technol Roorkee, Inst Instrumentat Ctr, Roorkee 247667, Uttar Pradesh, India
关键词
gas sensor; TiO2; sol-gel; surface area; porous; thin film; DOPED TIO2; GRAIN-SIZE; SENSOR; PERFORMANCE; NANOWIRES;
D O I
10.1088/1361-6528/aa5836
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface-area-controlled porous TiO2 thin films were prepared via a simple sol-gel chemical route, and their gas-sensing properties were thoroughly investigated in the presence of typical oxidizing NO2 gas. The surface area of TiO2 thin films was controlled by developing porous TiO2 networked by means of controlling the TiO2-to-TTIP (titanium isopropoxide, C12H28O4Ti) molar ratio, where TiO2 nanoparticles of size similar to 20 nm were used. The sensor's response was found to depend on the surface area of the TiO2 thin films. The porous TiO2 thin-film sensor with greater surface area was more sensitive than those of TiO2 thin films with lesser surface area. The improved sensing ability was ascribed to the porous network formed within the thin films by TiO2 sol. Our results show that surface area is a key parameter for obtaining superior gas-sensing performance; this provides important guidelines for preparing and using porous thin films for gas-sensing applications.
引用
收藏
页数:10
相关论文
共 34 条
[21]   Enhancement of the optically activated NO2 gas sensing response of brookite TiO2 nanorods/nanoparticles thin films deposited by matrix-assisted pulsed-laser evaporation [J].
Manera, M. G. ;
Taurino, A. ;
Catalano, M. ;
Rella, R. ;
Caricato, A. P. ;
Buonsanti, R. ;
Cozzoli, P. D. ;
Martino, M. .
SENSORS AND ACTUATORS B-CHEMICAL, 2012, 161 (01) :869-879
[22]   Size-dependent photoconductance in SnO2 nanowires [J].
Mathur, S ;
Barth, S ;
Shen, H ;
Pyun, JC ;
Werner, U .
SMALL, 2005, 1 (07) :713-717
[23]   Pd-doped TiO2 nanofiber networks for gas sensor applications [J].
Moon, Jaehyun ;
Park, Jin-Ah ;
Lee, Su-Jae ;
Zyung, Taehyoung ;
Kim, Il-Doo .
SENSORS AND ACTUATORS B-CHEMICAL, 2010, 149 (01) :301-305
[24]   Growth kinetics of nanograins in SnO2 fibers and size dependent sensing properties [J].
Park, Jae Young ;
Asokan, Kandasami ;
Choi, Sun-Woo ;
Kim, Sang Sub .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 152 (02) :254-260
[25]   Gas-kinetic interactions of nitrous oxides with SnO2 surfaces [J].
Ruhland, B ;
Becker, T ;
Muller, G .
SENSORS AND ACTUATORS B-CHEMICAL, 1998, 50 (01) :85-94
[26]   Effect of Al doping on NO2 gas sensing of TiO2 at elevated temperatures [J].
Saruhan, B. ;
Yuece, A. ;
Goenuellue, Y. ;
Kelm, K. .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 187 :586-597
[27]   Ethanol sensing properties of TeO2 thin films prepared by non-hydrolytic sol-gel process [J].
Shen, Yanbai ;
Yan, Xiuxiu ;
Zhao, Sikai ;
Chen, Xiangxiang ;
Wei, Dezhou ;
Gao, Shuling ;
Han, Cong ;
Meng, Dan .
SENSORS AND ACTUATORS B-CHEMICAL, 2016, 230 :667-672
[28]   Synthesis of In2O3-ZnO core-shell nanowires and their application in gas sensing [J].
Singh, Nandan ;
Ponzoni, Andrea ;
Gupta, Raju Kumar ;
Lee, Pooi See ;
Comini, Elisabetta .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 160 (01) :1346-1351
[29]   Gas Sensor Based on Metal-Insulator Transition in VO2 Nanowire Thermistor [J].
Strelcov, Evgheni ;
Lilach, Yigal ;
Kolmakov, Andrei .
NANO LETTERS, 2009, 9 (06) :2322-2326
[30]   V-groove SnO2 nanowire sensors: fabrication and Pt-nanoparticle decoration [J].
Sun, Gun-Joo ;
Choi, Sun-Woo ;
Jung, Sung-Hyun ;
Katoch, Akash ;
Kim, Sang Sub .
NANOTECHNOLOGY, 2013, 24 (02)