The temperature-jump problem based on the linearized Boltzmann equation for a binary mixture of rigid spheres

被引:7
作者
Garcia, R. D. M.
Siewert, C. E. [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] HSH Sci Comp, BR-12242540 Sao Jose Dos Campos, SP, Brazil
关键词
rarefied gas dynamics; binary mixtures; rigid spheres; temperature-jump coefficient;
D O I
10.1016/j.euromechflu.2006.04.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An analytical version of the discrete-ordinates method (the ADO method) is used with recently reported analytical forms for the rigid-sphere scattering kernels to establish a concise and particularly accurate solution to the temperature-jump problem for a binary gas mixture described by the linearized Boltzmann equation. The solution yields, in addition to the temperature-jump coefficient for the general (specular-diffuse) case of Maxwell boundary conditions for each of the two species, the density, the temperature and the heat-flow profiles for both types of particles. Numerical results are reported for two binary mixtures (Ne-Ar and He-Xe) with various molar concentrations. (c) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:132 / 153
页数:22
相关论文
共 34 条
[1]   The temperature-jump problem in rarefied-gas dynamics [J].
Barichello, LB ;
Siewert, CE .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2000, 11 :353-364
[2]   The temperature-jump problem for a variable collision frequency model [J].
Barichello, LB ;
Bartz, ACR ;
Camargo, M ;
Siewert, CE .
PHYSICS OF FLUIDS, 2002, 14 (01) :382-391
[3]   A discrete-ordinates solution for a non-grey model with complete frequency redistribution [J].
Barichello, LB ;
Siewert, CE .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1999, 62 (06) :665-675
[4]  
CERCIGNANI C, 1991, RAREFIED GAS DYNAMICS, P1379
[5]  
CERCIGNANI C, 1993, P 7 EUR C MATH IND M, P175
[6]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[7]  
Cercignani C., 1975, THEORY APPL BOLTZMAN
[8]  
Chapman S., 1990, MATH THEORY NONUNIFO
[9]  
DONGARRA JJ, 1979, LINPACK USERS GUIDE
[10]  
Ferziger J. H., 1972, MATH THEORY TRANSPOR