Massless Dirac-Weyl fermions in a T3 optical lattice

被引:194
作者
Bercioux, D. [1 ,2 ]
Urban, D. F. [2 ,3 ]
Grabert, H. [1 ,2 ]
Haeusler, W. [2 ,4 ]
机构
[1] Univ Freiburg, Freiburg Inst Adv Studies, D-79104 Freiburg, Germany
[2] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
[3] Univ Autonoma Madrid, Fac Ciencias, Dept Fis Mat Condensada C 12, E-28049 Madrid, Spain
[4] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 06期
关键词
PHYSICS; PHASE; GAS;
D O I
10.1103/PhysRevA.80.063603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose an experimental setup for the observation of quasirelativistic massless fermions. It is based on a T-3 optical lattice, realized by three pairs of counterpropagating lasers, filled with fermionic cold atoms. We show that in the long wavelength approximation the T-3 Hamiltonian generalizes the Dirac-Weyl Hamiltonian for the honeycomb lattice, however, with a larger value of the pseudospin S=1. In addition to the Dirac cones, the spectrum includes a dispersionless branch of localized states producing a finite jump in the atomic density. Furthermore, implications for the Landau levels are discussed.
引用
收藏
页数:4
相关论文
共 29 条
[1]   GROUND-STATE OF A SPIN-1-2 CHARGED-PARTICLE IN A 2-DIMENSIONAL MAGNETIC-FIELD [J].
AHARONOV, Y ;
CASHER, A .
PHYSICAL REVIEW A, 1979, 19 (06) :2461-2462
[2]   Rashba effect in quantum networks [J].
Bercioux, D ;
Governale, M ;
Cataudella, V ;
Ramaglia, VM .
PHYSICAL REVIEW B, 2005, 72 (07)
[3]   Rashba-effect-induced localization in quantum networks [J].
Bercioux, D ;
Governale, M ;
Cataudella, V ;
Ramaglia, VM .
PHYSICAL REVIEW LETTERS, 2004, 93 (05) :056802-1
[4]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Magnetic confinement of massless Dirac fermions in graphene [J].
De Martino, A. ;
Dell'Anna, L. ;
Egger, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[7]   Pauli operator and Aharonov-Casher theorem for measure valued magnetic fields [J].
Erdos, L ;
Vougalter, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 225 (02) :399-421
[8]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[9]   Non-Abelian Optical Lattices: Anomalous Quantum Hall Effect and Dirac Fermions [J].
Goldman, N. ;
Kubasiak, A. ;
Bermudez, A. ;
Gaspard, P. ;
Lewenstein, M. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[10]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44