Multiband linear and circular polarization rotating metasurface based on multiple plasmonic resonances for C, X and K band applications

被引:26
作者
Khan, M. Ismail [1 ,2 ]
Chen, Yixiao [1 ]
Hu, Bin [1 ]
Ullah, Naeem [1 ]
Bukhari, Syed Hashim Raza [2 ]
Iqbal, Shahid [3 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] COMSATS Univ Islamabad, Dept Elect & Comp Engn, Attock Campus, Islamabad, Pakistan
[3] Southeast Univ Nanjing, Sch Informat Sci & Engn, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
WAVE PLATE; CONVERSION; DICHROISM;
D O I
10.1038/s41598-020-75081-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this work, a multiband polarization converting metasurface is presented which achieves crosspolarization conversion in five frequency bands while linear-to-circular and circular-to-linear polarization transformation in eight frequency bands. The polarization transforming functionality of the structure is spread over an ultra-wide frequency range (5-37 GHz) covering most of X, C, Ku, K and Ka bands. Such an extraordinary ultra-wideband operation originates from multiple plasmonic resonances occurring in the structure based on two coupled rectangular split-ring resonators. Moreover, the polarization transforming capability is stable within the frequency range 5-19 GHz for wide oblique incidence angles, which is up to 60 degrees, both for transverse-electric and transversemagnetic polarizations. Furthermore, the proposed structure acts as a meta-mirror which preserves handedness of the circular polarization upon reflection. Measurements performed on the fabricated metasurface are found to be consistent with numerical simulation results. The ability to perform three functionalities through a single compact structure with extraordinary wideband, qualifies the proposed design to be a promising candidate for integration with important microwave applications such as satellite, radar, and 5G communication.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Extrinsic 2D chirality: giant circular conversion dichroism from a metal-dielectric-metal square array [J].
Cao, Tun ;
Wei, Chenwei ;
Mao, Libang ;
Li, Yang .
SCIENTIFIC REPORTS, 2014, 4
[2]   Broadband polarization conversion with anisotropic plasmonic metasurfaces [J].
Cao, Wei ;
Yang, Xiaodong ;
Gao, Jie .
SCIENTIFIC REPORTS, 2017, 7
[3]   Broadband perfect polarization conversion metasurfaces [J].
Chen Hong-Ya ;
Wang Jia-Fu ;
Ma Hua ;
Qu Shao-Bo ;
Zhang Jie-Qiu ;
Xu Zhuo ;
Zhang An-Xue .
CHINESE PHYSICS B, 2015, 24 (01)
[4]   Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances [J].
Chen, Hongya ;
Wang, Jiafu ;
Ma, Hua ;
Qu, Shaobo ;
Xu, Zhuo ;
Zhang, Anxue ;
Yan, Mingbao ;
Li, Yongfeng .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (15)
[5]   A review of metasurfaces: physics and applications [J].
Chen, Hou-Tong ;
Taylor, Antoinette J. ;
Yu, Nanfang .
REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (07)
[6]  
Fahad A. K, 2020, SCI REP-UK, V10, P1
[7]   Freely Tunable Broadband Polarization Rotator for Terahertz Waves [J].
Fan, Ren-Hao ;
Zhou, Yu ;
Ren, Xiao-Ping ;
Peng, Ru-Wen ;
Jiang, Shang-Chi ;
Xu, Di-Hu ;
Xiong, Xiang ;
Huang, Xian-Rong ;
Wang, Mu .
ADVANCED MATERIALS, 2015, 27 (07) :1201-1206
[8]   Broadband polarization rotator based on multi-order plasmon resonances and high impedance surfaces [J].
Feng, Mingde ;
Wang, Jiafu ;
Ma, Hua ;
Mo, Weidong ;
Ye, Hongjun ;
Qu, Shaobo .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (07)
[9]   Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction [J].
Grady, Nathaniel K. ;
Heyes, Jane E. ;
Chowdhury, Dibakar Roy ;
Zeng, Yong ;
Reiten, Matthew T. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Dalvit, Diego A. R. ;
Chen, Hou-Tong .
SCIENCE, 2013, 340 (6138) :1304-1307
[10]   Multiband Efficient Asymmetric Transmission With Polarization Conversion Using Chiral Metasurface [J].
Khan, M. Ismail ;
Hu, Bin ;
Chen, Yixiao ;
Ullah, Naeem ;
Khan, Muhammad Junaid Iqbal ;
Khalid, Ataur Rehman .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (07) :1137-1141