Fast marching method for calculating reactive trajectories for chemical reactions

被引:13
作者
Dey, Bijoy K.
Bothwell, Stuart
Ayers, Paul W.
机构
[1] McMaster Univ, Dept Chem, Hamilton, ON, Canada
[2] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
fast-marching method; Hamilton-Jacobi equation; principle of least action; reaction path; FINDING TRANSITION-STATES; REACTION-PATH; CONFORMATIONAL TRANSITIONS; SCATTERED DATA; LARGE SETS; DYNAMICS; SYSTEMS; INTERPOLATION; COMPUTATION; PEPTIDES;
D O I
10.1007/s10910-006-9060-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a method for computing classical Newtonian trajectories that minimize the path length or transit time from reactant to product. Our approach is based on a generalization of the fast-marching method, which allows us to construct the solution of the Hamilton-Jacobi equation for the action that optimizes the desired quantity. The resulting "reactive paths" can be interpreted as reaction coordinates but, unlike more conventional choices, they contain dynamical information about the chemical system of interest.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 45 条
[1]   ESSENTIAL DYNAMICS OF PROTEINS [J].
AMADEI, A ;
LINSSEN, ABM ;
BERENDSEN, HJC .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (04) :412-425
[2]  
[Anonymous], 1983, HDB STOCHASTIC METHO
[3]  
APAPORT DC, 2004, ART MOL DYNAMICS SIM
[4]   FINDING SADDLES ON MULTIDIMENSIONAL POTENTIAL SURFACES [J].
BERRY, RS ;
DAVIS, HL ;
BECK, TL .
CHEMICAL PHYSICS LETTERS, 1988, 147 (01) :13-17
[5]   ON FINDING TRANSITION-STATES [J].
CERJAN, CJ ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1981, 75 (06) :2800-2806
[6]  
Courant R., 1989, METHODS MATH PHYS
[7]  
CZERMINSKI R, 1990, INT J QUANTUM CHEM, P167
[8]   REACTION-PATH STUDY OF CONFORMATIONAL TRANSITIONS IN FLEXIBLE SYSTEMS - APPLICATIONS TO PEPTIDES [J].
CZERMINSKI, R ;
ELBER, R .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5580-5601
[9]   A Hamilton-Jacobi type equation for computing minimum potential energy paths [J].
Dey, BK ;
Ayers, PW .
MOLECULAR PHYSICS, 2006, 104 (04) :541-558
[10]   Hamilton-Jacobi equation for the least-action/least-time dynamical path based on fast marching method [J].
Dey, BK ;
Janicki, MR ;
Ayers, PW .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (14) :6667-6679