An integrable generalization of the nonlinear Schrodinger equation on the half-line and solitons

被引:100
作者
Lenells, J. [1 ]
Fokas, A. S. [1 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
基金
英国工程与自然科学研究理事会;
关键词
BOUNDARY VALUE-PROBLEM; PDES;
D O I
10.1088/0266-5611/25/11/115006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze initial-boundary value problems for an integrable generalization of the nonlinear Schrodinger equation formulated on the half-line. In particular, we investigate the so-called linearizable boundary conditions, which in this case are of Robin type. Furthermore, we use a particular solution to verify explicitly all the steps needed for the solution of a well-posed problem.
引用
收藏
页数:32
相关论文
共 18 条
[1]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[2]   Analysis of the global relation for the nonlinear Schrödinger equation on the half-line [J].
A. Boutet de Monvel ;
A. S. Fokas ;
D. Shepelsky .
Letters in Mathematical Physics, 2003, 65 (3) :199-212
[3]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368
[4]  
Fokas A S., 1992, THEOR MATH FIZ, V92, P387
[5]   Linearizable initial boundary value problems for the sine-Gordon equation on the half-line [J].
Fokas, AS .
NONLINEARITY, 2004, 17 (04) :1521-1534
[6]   The generalized Dirichlet-to-Neumann map for certain nonlinear evolution PDEs [J].
Fokas, AS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (05) :639-670
[7]   Asymptotic integrability of water waves [J].
Fokas, AS ;
Liu, QM .
PHYSICAL REVIEW LETTERS, 1996, 77 (12) :2347-2351
[8]   ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS [J].
FOKAS, AS .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) :145-150
[9]   Integrable Nonlinear evolution equations on the half-line [J].
Fokas, AS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 230 (01) :1-39
[10]   The nonlinear Schrodinger equation on the half-line [J].
Fokas, AS ;
Its, AR ;
Sung, LY .
NONLINEARITY, 2005, 18 (04) :1771-1822