Sequential discontinuities of Feynman integrals and the monodromy group

被引:45
作者
Bourjaily, Jacob L. [1 ,2 ,3 ]
Hannesdottir, Holmfridur [4 ]
McLeod, Andrew J. [1 ,2 ]
Schwartz, Matthew D. [4 ]
Vergu, Cristian [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[3] Penn State Univ, Dept Phys, Inst Gravitat & Cosmos, University Pk, PA 16892 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Scattering Amplitudes; Supersymmetric Gauge Theory; MULTIPLE POLYLOGARITHMS; MOMENTUM-SPACE; WILSON LOOPS; RENORMALIZATION; SINGULARITIES; AMPLITUDES; SERIES;
D O I
10.1007/JHEP01(2021)205
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We generalize the relation between discontinuities of scattering amplitudes and cut diagrams to cover sequential discontinuities (discontinuities of discontinuities) in arbitrary momentum channels. The new relations are derived using time-ordered perturbation theory, and hold at phase-space points where all cut momentum channels are simultaneously accessible. As part of this analysis, we explain how to compute sequential discontinuities as monodromies and explore the use of the monodromy group in characterizing the analytic properties of Feynman integrals. We carry out a number of cross-checks of our new formulas in polylogarithmic examples, in some cases to all loop orders.
引用
收藏
页数:95
相关论文
共 113 条
[91]   ON ANALYTIC PROPERTIES OF VERTEX PARTS IN QUANTUM FIELD THEORY [J].
LANDAU, LD .
NUCLEAR PHYSICS, 1959, 13 (01) :181-192
[92]   ON THE FORMULATION OF QUANTIZED FIELD THEORIES .2. [J].
LEHMANN, H ;
SYMANZIK, K ;
ZIMMERMANN, W .
NUOVO CIMENTO, 1957, 6 (02) :319-333
[93]  
Leray J., 1959, Bulletin de la Societe Mathematique de France, V87, P81, DOI [10.24033/bsmf.1515, DOI 10.24033/BSMF.1515]
[94]   Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation [J].
Li, Ye ;
Zhu, Hua Xing .
PHYSICAL REVIEW LETTERS, 2017, 118 (02)
[95]  
Matthew J, 2019, 14 INT S RAD CORR AP, V12
[96]   A novel algorithm for nested summation and hypergeometric expansions [J].
McLeod, Andrew J. ;
Munch, Henrik Jessen ;
Papathanasiou, Georgios ;
von Hippel, Matt .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
[97]  
Panzer E., Feynman integrals and hyperlogarithms
[98]  
PHAM F, 1967, ANN I H POINCARE A, V6, P89
[99]   GAUGE-FIELDS AS RINGS OF GLUE [J].
POLYAKOV, AM .
NUCLEAR PHYSICS B, 1980, 164 (01) :171-188
[100]  
Postnikov A., ARXIV170902813