Sequential discontinuities of Feynman integrals and the monodromy group

被引:45
作者
Bourjaily, Jacob L. [1 ,2 ,3 ]
Hannesdottir, Holmfridur [4 ]
McLeod, Andrew J. [1 ,2 ]
Schwartz, Matthew D. [4 ]
Vergu, Cristian [1 ,2 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, Discovery Ctr, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[3] Penn State Univ, Dept Phys, Inst Gravitat & Cosmos, University Pk, PA 16892 USA
[4] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
Scattering Amplitudes; Supersymmetric Gauge Theory; MULTIPLE POLYLOGARITHMS; MOMENTUM-SPACE; WILSON LOOPS; RENORMALIZATION; SINGULARITIES; AMPLITUDES; SERIES;
D O I
10.1007/JHEP01(2021)205
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We generalize the relation between discontinuities of scattering amplitudes and cut diagrams to cover sequential discontinuities (discontinuities of discontinuities) in arbitrary momentum channels. The new relations are derived using time-ordered perturbation theory, and hold at phase-space points where all cut momentum channels are simultaneously accessible. As part of this analysis, we explain how to compute sequential discontinuities as monodromies and explore the use of the monodromy group in characterizing the analytic properties of Feynman integrals. We carry out a number of cross-checks of our new formulas in polylogarithmic examples, in some cases to all loop orders.
引用
收藏
页数:95
相关论文
共 113 条
[1]   Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12)
[2]   Algebraic Structure of Cut Feynman Integrals and the Diagrammatic Coaction [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[3]   Cuts from residues: the one-loop case [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06)
[4]   From multiple unitarity cuts to the coproduct of Feynman integrals [J].
Abreu, Samuel ;
Britto, Ruth ;
Duhr, Claude ;
Gardi, Einan .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10)
[5]   Bootstrapping the QCD soft anomalous dimension [J].
Almelid, Oyvind ;
Duhr, Claude ;
Gardi, Einan ;
McLeod, Andrew ;
White, Chris D. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (09)
[6]   Three-Loop Corrections to the Soft Anomalous Dimension in Multileg Scattering [J].
Almelid, Oyvind ;
Duhr, Claude ;
Gardi, Einan .
PHYSICAL REVIEW LETTERS, 2016, 117 (17)
[7]  
[Anonymous], ARXIV11106917
[9]   PROPERTIES OF THE MOMENTUM SPACE ANALYTIC FUNCTION [J].
ARAKI, H ;
BURGOYNE, N .
NUOVO CIMENTO, 1960, 18 (02) :342-346
[10]   QUANTUM CONTOUR FIELD-EQUATIONS [J].
AREFEVA, IY .
PHYSICS LETTERS B, 1980, 93 (03) :347-353