Viscous Flow Around a Rigid Body Performing a Time-periodic Motion

被引:8
作者
Eiter, Thomas [1 ]
Kyed, Mads [2 ,3 ]
机构
[1] Weierstrass Inst Appl Anal & Stochast, Mohrenstr 39, D-10117 Berlin, Germany
[2] Flensburg Univ Appl Sci, Kanzleistr 91-93, D-24943 Flensburg, Germany
[3] Waseda Univ, Fac Sci & Engn, Tokyo, Japan
关键词
Navier-Stokes; Oseen flow; Time-periodic solutions; Rotating obstacles; 35Q30; 35B10; 76D05; 76D07; 76U05;
D O I
10.1007/s00021-021-00556-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.
引用
收藏
页数:23
相关论文
共 55 条
[1]  
Bruhat F., Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes p -adiques, Bull. Soc. Math. Fr., 89, pp. 43-75, (1961)
[2]  
Burenkov V.I., Extension of functions with preservation of the Sobolev seminorm, Trudy Mat. Inst. Steklov, 172, pp. 71-85, (1985)
[3]  
Edwards R., Gaudry G., Littlewood-Paley and Multiplier Theory, (1977)
[4]  
Eiter T., Kyed M., Time-periodic linearized Navier-Stokes equations: An approach based on Fourier multipliers, Particles in Flows, Adv. Math. Fluid Mech., pp. 77-137, (2017)
[5]  
Eiter T., Kyed M., Estimates of time-periodic fundamental solutions to the linearized Navier–Stokes equations, J. Math. Fluid Mech., 20, 2, pp. 517-529, (2018)
[6]  
Farwig R., An L<sup>q</sup> -analysis of viscous fluid flow past a rotating obstacle, Tohoku Math. J., 58, 1, pp. 129-147, (2006)
[7]  
Farwig R., Neustupa J., On the spectrum of an Oseen-type operator arising from flow past a rotating body, Integral Eq. Oper. Theory, 62, pp. 169-189, (2008)
[8]  
Farwig R., Neustupa J., Spectral properties in L<sup>q</sup> of an Oseen operator modelling fluid flow past a rotating body, Tohoku Math. J., 62, 2, pp. 287-309, (2010)
[9]  
Farwig R., Sohr H., Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Jpn, 46, 4, pp. 607-643, (1994)
[10]  
Galdi G., Kyed M., Time-periodic solutions to the Navier-Stokes equations in the three-dimensional whole-space with a non-zero drift term: Asymptotic profile at spatial infinity, 710, pp. 121-144, (2018)