A KDV-TYPE BOUSSINESQ SYSTEM: FROM THE ENERGY LEVEL TO ANALYTIC SPACES

被引:24
作者
Bona, Jerry L. [1 ]
Grujic, Zoran [2 ]
Kalisch, Henrik [3 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ Virginia, Dept Math, Charlottesville, VA 22904 USA
[3] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
Boussinesq systems; two-way propagation of water waves; well-posedness for nonlinear dispersive equations; analyticity; Gevrey-space analysis; NONLINEAR DISPERSIVE MEDIA; COMPLEX-VALUED SOLUTIONS; AMPLITUDE LONG WAVES; NUMERICAL-SOLUTION; WELL-POSEDNESS; CAUCHY-PROBLEM; REGULARITY; EQUATIONS; CONVERGENCE; PROJECTION;
D O I
10.3934/dcds.2010.26.1121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered here is the well-posedness of a KdV-type Boussinesq system modeling two-way propagation of small-amplitude long waves on the surface of an ideal fluid when the motion is sensibly two dimensional. Solutions are obtained in a range of Sobolev-type spaces, from the energy level to the analytic Gevrey spaces. In addition, a criterion for detecting the possibility of blow-up in finite time in terms of loss of analyticity is derived.
引用
收藏
页码:1121 / 1139
页数:19
相关论文
共 30 条
[1]   Numerical solution of Boussinesq systems of KdV-KdV type: II. Evolution of radiating solitary waves [J].
Bona, J. L. ;
Dougalis, V. A. ;
Mitsotakis, D. E. .
NONLINEARITY, 2008, 21 (12) :2825-2848
[2]   Numerical solution of KdV-KdV systems of Boussinesq equations - I. The numerical scheme and generalized solitary waves [J].
Bona, J. L. ;
Dougalis, V. A. ;
Mitsotakis, D. E. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2007, 74 (2-3) :214-228
[3]   Global solutions of the derivative Schrodinger equation in a class of functions analytic in a strip [J].
Bona, Jerry L. ;
Grujic, Zoran ;
Kalisch, Henrik .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :186-203
[4]   Pole dynamics of interacting solitons and blowup of complex-valued solutions of KdV [J].
Bona, Jerry L. ;
Weissler, Fred B. .
NONLINEARITY, 2009, 22 (02) :311-349
[5]   Long wave approximations for water waves [J].
Bona, JL ;
Colin, T ;
Lannes, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (03) :373-410
[6]   Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation [J].
Bona, JL ;
Grujic, Z ;
Kalisch, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (06) :783-797
[7]  
Bona JL, 2001, INDIANA U MATH J, V50, P759
[8]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
NONLINEARITY, 2004, 17 (03) :925-952
[9]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[10]   Spatial analyticity properties of nonlinear waves [J].
Bona, JL ;
Grujic, Z .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (03) :345-360