On extended Hurwitz-Lerch zeta function

被引:0
|
作者
Luo, Min-Jie [1 ]
Parmar, Rakesh Kumar [2 ]
Raina, Ravinder Krishna [3 ,4 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Govt Coll Engn & Technol, Dept Math, Bikaner 334004, Rajasthan, India
[3] MP Univ Agr & Technol, Dept Math, Udaipur 313001, Rajasthan, India
[4] 10-11 Ganpati Vihar,Opposite Sect 5, Udaipur 313002, Rajasthan, India
基金
中国国家自然科学基金;
关键词
Abel's summation formula; Complete monotonicity; Extended beta function; Extended Hurwitz-Lerch zeta function; Generating function; Lindelof-Wirtinger expansion; DISTRIBUTIONS; FAMILIES; SERIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates an extended form of a beta function B-p,B-q (x, y). We first study the convergence problem of the function B-p,B-q (x, y) and consider the completely monotonic and log-convex properties of this function. As a result, we obtain a pair of Laguerre type inequalities. Next, we provide a new double integral representation for the function B-p,B-q (x, y). Subsequently, we consider the convergence problem of the extended Hurwitz-Lerch zeta function Phi(lambda,mu;v) (z, s, a; p, q) defined by its series representation. Upon using the series manipulation techniques, we obtain two series identities. We also find various integral representations for the function. Phi(lambda,mu;v) (z, s, a; p, q). Lastly, we apply Fourier analysis to the function z(a) Phi(mu;v) (z, s, a; p, q) and obtain a Lindelof-Wirtinger type expansion. Some interesting and promising results are also illustrated. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1281 / 1304
页数:24
相关论文
共 50 条
  • [1] A note on extended Hurwitz-Lerch Zeta function
    Ghayasuddin, M.
    Khan, N. U.
    Khan, Waseem A.
    Ahmad, Moin
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 82 - 89
  • [2] Remark on the Hurwitz-Lerch zeta function
    Choi, Junesang
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 10
  • [3] Remark on the Hurwitz-Lerch zeta function
    Junesang Choi
    Fixed Point Theory and Applications, 2013
  • [4] On the Hurwitz-Lerch zeta-function
    Kanemitsu S.
    Katsurada M.
    Yoshimoto M.
    aequationes mathematicae, 2000, 59 (1) : 1 - 19
  • [5] A generalization of the Hurwitz-Lerch Zeta function
    Choi, Junesang
    Jang, Douk Soo
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (01) : 65 - 79
  • [6] Integral and computational representations of the extended Hurwitz-Lerch zeta function
    Srivastava, H. M.
    Saxena, Ram K.
    Pogany, Tibor K.
    Saxena, Ravi
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 487 - 506
  • [7] An extended general Hurwitz-Lerch zeta function as a Mathieu (a, λ)-series
    Jankov, Dragana
    Pogany, Tibor
    Saxena, Ram K.
    APPLIED MATHEMATICS LETTERS, 2011, 24 (08) : 1473 - 1476
  • [8] A new integral transform associated with the -extended Hurwitz-Lerch zeta function
    Srivastava, H. M.
    Jolly, Nidhi
    Bansal, Manish Kumar
    Jain, Rashmi
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 1679 - 1692
  • [9] Two-sided inequalities for the extended Hurwitz-Lerch Zeta function
    Srivastava, H. M.
    Jankov, Dragana
    Pogany, Tibor K.
    Saxena, R. K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (01) : 516 - 522
  • [10] Asymptotic expansions of the Hurwitz-Lerch zeta function
    Ferreira, C
    López, JL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) : 210 - 224