Lipschitz and Holder global optimization using space-filling curves

被引:45
|
作者
Lera, D. [2 ]
Sergeyev, Ya. D. [1 ,3 ,4 ]
机构
[1] Univ Calabria, Dipartimento Elettron Informat & Sistemist, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Cagliari, Dipartimento Matemat & Informat, Cagliari, Italy
[3] Natl Res Council Italy, Inst High Performance Comp & Networking, I-87036 Arcavacata Di Rende, CS, Italy
[4] Univ Nizhni Novgorod, Software Dept, Nizhnii Novgorod, Russia
关键词
Global optimization; Lipschitz and Holder functions; Local information; Space-filling curves approximations; Acceleration;
D O I
10.1016/j.apnum.2009.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the global optimization problem min(y is an element of s) F(y) with S =[a, b], a, b is an element of R-N, and F(y) satisfying the Lipschitz condition, is considered. To deal with it four algorithms are proposed. All of them use numerical approximations of space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the Holder condition. The Lipschitz constant is adaptively estimated by the introduced methods during the search. Local tuning on the behavior of the objective function and a newly proposed technique, named local improvement, are used in order to accelerate the search. Convergence conditions are given. A theoretical relation between the order of a Hilbert space-filling curve approximation used to reduce the problem dimension and the accuracy of the resulting solution is established, as well. Numerical experiments carried out on several hundreds of test functions show a quite promising performance of the new algorithms. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:115 / 129
页数:15
相关论文
共 50 条
  • [31] A Framework for Interpolating Scattered Data Using Space-Filling Curves
    Weston, David J.
    ADVANCES IN INTELLIGENT DATA ANALYSIS XV, 2016, 9897 : 249 - 260
  • [32] TEXTURE CLASSIFICATION METHOD USING MULTIPLE SPACE-FILLING CURVES
    LEE, JH
    HSUEH, YC
    PATTERN RECOGNITION LETTERS, 1994, 15 (12) : 1241 - 1244
  • [33] Using space-filling curves for multi-dimensional indexing
    Lawder, JK
    King, PJH
    ADVANCES IN DATABASES, 2000, 1832 : 20 - 35
  • [34] Partitioning finite element meshes using space-filling curves
    Schamberger, S
    Wierum, JM
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2005, 21 (05): : 759 - 766
  • [35] Classification of Phonetic Characters by Space-Filling Curves
    Owczarek, Valentin
    Drapeau, Jordan
    Burie, Jean-Christophe
    Franco, Patrick
    Coustaty, Mickael
    Mullot, Remy
    Eglin, Veronique
    DOCUMENT ANALYSIS SYSTEMS, 2020, 12116 : 89 - 100
  • [36] Dimensions of the coordinate functions of space-filling curves
    Allaart, Pieter C.
    Kawamura, Kiko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 1161 - 1176
  • [37] Space-Filling Curves and Phases of the Loewner Equation
    Lind, Joan
    Rohde, Steffen
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2012, 61 (06) : 2231 - 2249
  • [38] Regularity and modulus of continuity of space-filling curves
    Kauranen, Aapo
    Koskela, Pekka
    Zapadinskaya, Aleksandra
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 73 - 100
  • [39] On the metric properties of discrete space-filling curves
    Gotsman, C
    Lindenbaum, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (05) : 794 - 797
  • [40] Reptilings and space-filling curves for acute triangles
    Gottschau, Marinus
    Haverkort, Herman
    Matzke, Kilian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2018, 60 (01) : 170 - 199