Physical momentum versus crystal momentum of acoustic phonons in a crystal lattice

被引:5
作者
Lee, Y. C. [1 ]
Lee, W. Z.
机构
[1] SUNY Buffalo, Dept Phys, Amherst, NY 14260 USA
[2] SUNY, Erie Community Coll, Dept Phys, Orchard Pk, NY 14127 USA
来源
PHYSICAL REVIEW B | 2006年 / 74卷 / 17期
关键词
D O I
10.1103/PhysRevB.74.172303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
From the statistical mechanics together with the kinetic theory of the pressure of phonons in a crystal we have established the general relation of p(q)=n gamma hq for the physical momentum (or anharmonic momentjm) of an acoustic phonon of wave vector q in n dimensions, gamma being the Gruneisen constant. This is only valid under the condition of broken translational symmetry. For then the anharmonic interaction would enable a q not equal 0 phonon to couple with and hence acquire a mate of acoustic phonon of q=0, resulting in a composite of the same q. This composite can then carry a physical momentum relative to the wall confining the crystalline medium via its momentum-carrying, q=0 mate. On the other hand, if translational invariance is maintained, a q not equal 0 phonon is incapable of any physical momentum relative to the inertial wall frame, with or without anharmonic coupling; it can only carry the more familiar "crystal momentum" which is the kind that is transported like sound intensity within and hence relative to the equilibrium crystalline medium. An elementary, semiclassical derivation of the "crystal momentum" is presented and discussed versus the "anharmonic momentum." Some applications of the latter are presented.
引用
收藏
页数:4
相关论文
共 9 条
[1]  
ASCHROFT NW, 1976, SOLID STATE PHYS, pCH25
[2]   THERMAL-EXPANSION OF CRYSTALS AND PHONON MOMENTUM [J].
CECCALDI, D ;
GHELFENSTEIN, M ;
SZWARC, H .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1975, 8 (04) :417-419
[3]  
Elmore W. C., 1969, PHYS WAVES
[4]  
FEYNMAN RP, 1963, FEYNMAN LECT PHYS, V1, pCH39
[5]  
GOTTFRIED K, 1966, QUANTUM MECH, V1, pCH8
[6]  
KITTEL C, 1995, INTRO SOLID STATE PH, P109
[7]  
Morse P. M., 1969, THERMAL PHYS
[8]  
SORBELLO RS, 1972, PHYS REV B, V6, P4757, DOI 10.1103/PhysRevB.6.4757
[9]  
ZIMAN JM, 1960, ELECT PHONONS, P133