On a sum involving the Euler totient function

被引:15
作者
Wu, J. [1 ,2 ]
机构
[1] Yangtze Normal Univ, Sch Math & Stat, Chongqing 408100, Peoples R China
[2] Univ Paris Est Creteil, CNRS, LAMA 8050, Lab Anal & Math Appl, F-94010 Creteil, France
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2019年 / 30卷 / 04期
关键词
Euler totient function; Exponential sums; Exponent pair;
D O I
10.1016/j.indag.2019.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this short note, we prove that 4/pi(2)x log x + O(x) <= Sigma(n <= x)phi([x/n]) <= (1/3 + 4/pi(2))x log x + O(x), for x -> infinity, where phi(n) is the Euler totient function and [t] is the integral part of real t. This improves recent results of Bordelles-Heyman-Shparlinski and of Dai-Pan. (C) 2019 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:536 / 541
页数:6
相关论文
共 6 条
[1]  
Bordelles O., 2018, ARXIV180800188V1MATH
[2]   DECOUPLING, EXPONENTIAL SUMS AND THE RIEMANN ZETA FUNCTION [J].
Bourgain, J. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (01) :205-224
[3]  
Dai Lixia, 2018, ARXIV180910381V1MATH
[4]   EXPONENTIAL-SUMS WITH MONOMIALS [J].
FOUVRY, E ;
IWANIEC, H .
JOURNAL OF NUMBER THEORY, 1989, 33 (03) :311-333
[5]  
Graham S. W., 1991, CORPUTS METHOD EXPON
[6]   Almost primes in short intervals [J].
Wu Jie .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) :2511-2524