Machine learning for flux regression in discrete fracture networks

被引:6
|
作者
Berrone, S. [1 ,3 ,4 ]
Della Santa, F. [1 ,3 ,4 ]
Pieraccini, S. [2 ,3 ]
Vaccarino, F. [1 ,4 ,5 ]
机构
[1] Politecn Torino, Dipartimento Sci Matemat, Turin, Italy
[2] Politecn Torino, Dipartimento Ingn Meccan & Aerosp, Turin, Italy
[3] INdAM GNCS Grp, Rome, Italy
[4] Politecn Torino, SmartData PoliTO, Turin, Italy
[5] ISI Fdn, Turin, Italy
关键词
Discrete fracture network flow simulations; Deep learning; Uncertainty quantification; CONSTRAINED OPTIMIZATION FORMULATION; TRANSIENT DARCY FLOW; HYBRID MORTAR METHOD; STEADY-STATE METHOD; UNCERTAINTY QUANTIFICATION; MODELING FLOW; POROUS-MEDIA; SOLVING FLOW; SIMULATIONS; INFORMATION;
D O I
10.1007/s13137-021-00176-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In several applications concerning underground flow simulations in fractured media, the fractured rock matrix is modeled by means of the Discrete Fracture Network (DFN) model. The fractures are typically described through stochastic parameters sampled from known distributions. In this framework, it is worth considering the application of suitable complexity reduction techniques, also in view of possible uncertainty quantification analyses or other applications requiring a fast approximation of the flow through the network. Herein, we propose the application of Neural Networks to flux regression problems in a DFN characterized by stochastic trasmissivities as an approach to predict fluxes.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Machine learning for flux regression in discrete fracture networks
    S. Berrone
    F. Della Santa
    S. Pieraccini
    F. Vaccarino
    GEM - International Journal on Geomathematics, 2021, 12
  • [2] Performance Analysis of Multi-Task Deep Learning Models for Flux Regression in Discrete Fracture Networks
    Berrone, Stefano
    Della Santa, Francesco
    GEOSCIENCES, 2021, 11 (03) : 1 - 24
  • [3] Physics-informed machine learning for backbone identification in discrete fracture networks
    Shriram Srinivasan
    Eric Cawi
    Jeffrey Hyman
    Dave Osthus
    Aric Hagberg
    Hari Viswanathan
    Gowri Srinivasan
    Computational Geosciences, 2020, 24 : 1429 - 1444
  • [4] Physics-informed machine learning for backbone identification in discrete fracture networks
    Srinivasan, Shriram
    Cawi, Eric
    Hyman, Jeffrey
    Osthus, Dave
    Hagberg, Aric
    Viswanathan, Hari
    Srinivasan, Gowri
    COMPUTATIONAL GEOSCIENCES, 2020, 24 (03) : 1429 - 1444
  • [5] Machine learning for graph-based representations of three-dimensional discrete fracture networks
    Manuel Valera
    Zhengyang Guo
    Priscilla Kelly
    Sean Matz
    Vito Adrian Cantu
    Allon G. Percus
    Jeffrey D. Hyman
    Gowri Srinivasan
    Hari S. Viswanathan
    Computational Geosciences, 2018, 22 : 695 - 710
  • [6] Machine learning for graph-based representations of three-dimensional discrete fracture networks
    Valera, Manuel
    Guo, Zhengyang
    Kelly, Priscilla
    Matz, Sean
    Cantu, Vito Adrian
    Percus, Allon G.
    Hyman, Jeffrey D.
    Srinivasan, Gowri
    Viswanathan, Hari S.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (03) : 695 - 710
  • [7] Predicting the Energetic Proton Flux with a Machine Learning Regression Algorithm
    Stumpo, Mirko
    Laurenza, Monica
    Benella, Simone
    Marcucci, Maria Federica
    ASTROPHYSICAL JOURNAL, 2024, 975 (01):
  • [8] Machine-Learning Upscales Realistic Discrete Fracture Simulations
    Carpenter, Chris
    JPT, Journal of Petroleum Technology, 2021, 73 (11): : 65 - 66
  • [9] Regression and Machine Learning Methods to Predict Discrete Outcomes in Accounting Research
    Krupa, Jake
    Minutti-Meza, Miguel
    JOURNAL OF FINANCIAL REPORTING, 2022, 7 (02): : 131 - 178
  • [10] A Machine Learning Based Approach to Detect Malicious Fast Flux Networks
    Kumar, Sathish A. P.
    Xu, Brian
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1676 - 1683