Probabilistic logic;
Transmission line measurements;
Uncertainty;
Probability distribution;
Random variables;
Wind speed;
Load modeling;
Available transfer capability (ATC);
discrete random variables;
polynomial chaos expansion (PCE);
total transfer capability (TTC);
AVAILABLE TRANSFER CAPABILITY;
UNCERTAINTY QUANTIFICATION;
LOAD;
FLOW;
TTC;
D O I:
10.1109/TPWRS.2020.3034520
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
The increasing uncertainty level caused by growing renewable energy sources (RES) and aging transmission networks poses a great challenge in the assessment of total transfer capability (TTC) and available transfer capability (ATC). In this paper, a novel data-driven sparse polynomial chaos expansion (DDSPCE) method is proposed for estimating the probabilistic characteristics (e.g., mean, variance, probability distribution) of probabilistic TTC (PTTC). Specifically, the proposed method, requiring no pre-assumed probabilistic distributions of random inputs, exploits data sets directly in estimating the PTTC. Besides, a sparse scheme is integrated to improve the computational efficiency. Numerical studies on the modified IEEE 118-bus system demonstrate that the proposed DDSPCE method can achieve accurate estimation for the probabilistic characteristics of PTTC with a high efficiency. Moreover, numerical results reveal the great significance of incorporating discrete random inputs in PTTC and ATC assessment, which nevertheless was not given sufficient attention.