From Gaudin Integrable Models to d-Dimensional Multipoint Conformal Blocks

被引:34
作者
Buric, Ilija [1 ]
Lacroix, Sylvain [2 ,3 ]
Mann, Jeremy A. [1 ]
Quintavalle, Lorenzo [1 ]
Schomerus, Volker [1 ]
机构
[1] DESY Hamburg, DESY Theory Grp, Notkestr 85, D-22603 Hamburg, Germany
[2] Univ Hamburg, Inst Theoret Phys 2, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Univ Hamburg, Zentrum Math Phys, Bundesstr 55, D-20146 Hamburg, Germany
基金
欧盟地平线“2020”;
关键词
BENDING FLOWS; EXPANSION; POLYGONS;
D O I
10.1103/PhysRevLett.126.021602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we initiate an integrability-based approach to multipoint conformal blocks for higher-dimensional conformal field theories. Our main observation is that conformal blocks for N-point functions may be considered as eigenfunctions of integrable Gaudin Hamiltonians. This provides us with a complete set of differential equations that can be used to evaluate multipoint blocks.
引用
收藏
页数:7
相关论文
共 49 条
[1]   On the Virasoro six-point identity block and chaos [J].
Anous, Tarek ;
Haehl, Felix M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (08)
[2]   SPACES OF ANALYTIC-FUNCTIONS ON A COMPLEX CONE AS CARRIERS FOR SYMMETRIC TENSOR REPRESENTATIONS OF SO(N) [J].
BARGMANN, V ;
TODOROV, IT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (06) :1141-1148
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]  
Bercini C., ARXIV200810407
[5]  
Buric I., IN PRESS
[6]   Limits of Gaudin Algebras, Quantization of Bending Flows, Jucys-Murphy Elements and Gelfand-Tsetlin Bases [J].
Chervov, Alexander ;
Falqui, Gregorio ;
Rybnikov, Leonid .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 91 (02) :129-150
[7]   Limits of Gaudin Systems: Classical and Quantum Cases [J].
Chervov, Alexander ;
Falqui, Gregorio ;
Rybnikov, Leonid .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[8]   Carving out OPE space and precise O(2) model critical exponents [J].
Chester, Shai M. ;
Landry, Walter ;
Liu, Junyu ;
Poland, David ;
Simmons-Duffin, David ;
Su, Ning ;
Vichi, Alessandro .
JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (06)
[9]   Spinning conformal blocks [J].
Costa, Miguel S. ;
Penedones, Joao ;
Poland, David ;
Rychkov, Slava .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11)
[10]   Spinning conformal correlators [J].
Costa, Miguel S. ;
Penedones, Joao ;
Poland, David ;
Rychkov, Slava .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (11)