Fractal frontiers of bursts and cracks in a fiber bundle model of creep rupture

被引:4
作者
Danku, Zsuzsa [1 ]
Kun, Ferenc [1 ]
Herrmann, Hans J. [2 ,3 ]
机构
[1] Univ Debrecen, Dept Theoret Phys, H-4010 Debrecen, Hungary
[2] ETH, Computat Phys IfB, HIF, CH-8093 Zurich, Switzerland
[3] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 06期
基金
欧洲研究理事会; 芬兰科学院;
关键词
Creep; -; Cracks; Piles;
D O I
10.1103/PhysRevE.92.062402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the geometrical structure of breaking bursts generated during the creep rupture of heterogeneous materials. Using a fiber bundle model with localized load sharing we show that bursts are compact geometrical objects; however, their external frontiers have a fractal structure which reflects their growth dynamics. The perimeter fractal dimension of bursts proved to have the universal value 1.25 independent of the external load and of the amount of disorder in the system. We conjecture that according to their geometrical features, breaking bursts fall in the universality class of loop-erased self-avoiding random walks with perimeter fractal dimension 5/4 similar to the avalanches of Abelian sand pile models. The fractal dimension of the growing crack front along which bursts occur proved to increase from 1 to 1.25 as bursts gradually cover the entire front.
引用
收藏
页数:6
相关论文
共 22 条
[1]   Statistical Similarity between the Compression of a Porous Material and Earthquakes [J].
Baro, Jordi ;
Corral, Alvaro ;
Illa, Xavier ;
Planes, Antoni ;
Salje, Ekhard K. H. ;
Schranz, Wilfried ;
Soto-Parra, Daniel E. ;
Vives, Eduard .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)
[2]   Crackling dynamics in material failure as the signature of a self-organized dynamic phase transition [J].
Bonamy, D. ;
Santucci, S. ;
Ponson, L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[3]   Record breaking bursts in a fiber bundle model of creep rupture [J].
Danku, Zsuzsa ;
Kun, Ferenc .
FRONTIERS IN PHYSICS, 2014, 2 :1-8
[4]   Creep rupture as a non-homogeneous Poissonian process [J].
Danku, Zsuzsa ;
Kun, Ferenc .
SCIENTIFIC REPORTS, 2013, 3
[5]   Temporal and Spacial Evolution of Bursts in Creep Rupture [J].
Danku, Zsuzsa ;
Kun, Ferenc .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[6]   SELF-ORGANIZED CRITICAL STATE OF SANDPILE AUTOMATON MODELS [J].
DHAR, D .
PHYSICAL REVIEW LETTERS, 1990, 64 (14) :1613-1616
[7]   Local dynamics of a randomly pinned crack front: a numerical study [J].
Gjerden, Knut S. ;
Stormo, Arne ;
Hansen, Alex .
FRONTIERS IN PHYSICS, 2014, 2 :1-10
[8]   Universality Classes in Constrained Crack Growth [J].
Gjerden, Knut S. ;
Stormo, Arne ;
Hansen, Alex .
PHYSICAL REVIEW LETTERS, 2013, 111 (13)
[9]   Competition of strength and stress disorder in creep rupture [J].
Halasz, Zoltan ;
Danku, Zsuzsa ;
Kun, Ferenc .
PHYSICAL REVIEW E, 2012, 85 (01)
[10]   Fatigue failure of disordered materials [J].
Kun, F. ;
Costa, M. H. ;
Costa Filho, R. N. ;
Andrade, J. S., Jr. ;
Soares, J. B. ;
Zapperi, S. ;
Herrmann, H. J. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,