Reduction and oxidation of oxide ion conductors with conductive atomic force microscopy

被引:19
|
作者
Lee, Wonyoung [1 ]
Lee, Minhwan [1 ]
Kim, Young-Beom [1 ]
Prinz, Fritz B. [1 ,2 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat & Sci Engn, Stanford, CA 94305 USA
关键词
KELVIN PROBE; FUEL-CELLS; OXYGEN/ZIRCONIA INTERFACE; CONTACT ELECTRIFICATION; CHARGE-TRANSFER; DOPED CERIA; THIN-FILMS; SURFACE; ELECTROLYTES; TEMPERATURE;
D O I
10.1088/0957-4484/20/44/445706
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Local accumulation and dissipation of charges on the surface of oxide ion conductors resulting from electric potentials were observed with conductive atomic force microscopy (AFM). After a negative bias was applied at the tip, a sequence of surface potential maps appeared compatible with electron injection onto the electrolyte surface. Applying a positive bias, in contrast, generated a positive surface charge adjacent to the tip contact area. This observation is consistent with the formation of oxide ion vacancies on the oxide surface. In addition, oxide ion conductivity at a low temperature range (100-200 degrees C) was obtained, and the activation energy for diffusion in gadolinia-doped ceria (GDC) was calculated as similar to 0.56 eV, implying that the majority of oxide ion vacancies diffuse on the surface rather than inside the bulk of the electrolyte.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Conductive tips for atomic force microscopy
    不详
    INDUSTRIAL CERAMICS, 2005, 25 (02): : 139 - 139
  • [2] Dependency of Conductive Atomic Force Microscopy and Lateral Force Microscopy Signals on Scan Parameters for Zinc Oxide Nanorods
    Yang, Yijun
    Kim, Kwanlae
    KOREAN JOURNAL OF METALS AND MATERIALS, 2022, 60 (02): : 149 - 159
  • [3] Conductive Atomic Force Microscopy of Chemically Synthesized Graphene Oxide and Interlayer Conduction
    Kanamori, Yoshio
    Obata, Seiji
    Saiki, Koichiro
    CHEMISTRY LETTERS, 2011, 40 (03) : 255 - 257
  • [4] Characterization of conductive probes for Atomic Force Microscopy
    Trenkler, T
    Hantschel, T
    Vandervorst, W
    Hellemans, L
    Kulisch, W
    Oesterschulze, E
    Niedermann, P
    Sulzbach, T
    DESIGN, TEST, AND MICROFABRICATION OF MEMS AND MOEMS, PTS 1 AND 2, 1999, 3680 : 1168 - 1179
  • [5] Conductive atomic force microscopy on carbon nanowalls
    Vetushka, A.
    Itoh, T.
    Nakanishi, Y.
    Fejfar, A.
    Nonomura, S.
    Ledinsky, M.
    Kocka, J.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (17) : 2545 - 2547
  • [6] Moire fringes in conductive atomic force microscopy
    Richarz, L.
    He, J.
    Ludacka, U.
    Bourret, E.
    Yan, Z.
    van Helvoort, A. T. J.
    Meier, D.
    APPLIED PHYSICS LETTERS, 2023, 122 (16)
  • [7] Observation of He bubbles in ion irradiated fusion materials by conductive atomic force microscopy
    Fan, Hongyu
    Li, Ruihuan
    Yang, Deming
    Wu, Yunfeng
    Niu, Jinhai
    Yang, Qi
    Zhao, Jijun
    Liu, Dongping
    JOURNAL OF NUCLEAR MATERIALS, 2013, 441 (1-3) : 54 - 58
  • [8] Simulations of the effect of an oxide on contact area measurements from conductive atomic force microscopy
    Chen, Rimei
    Vishnubhotla, Sai Bharadwaj
    Jacobs, Tevis D. B.
    Martini, Ashlie
    NANOSCALE, 2019, 11 (03) : 1029 - 1036
  • [9] Modification of electrical properties of tungsten oxide nanorods using conductive atomic force microscopy
    Guaino, Ph.
    Gillet, M.
    Delamare, R.
    Gillet, E.
    SURFACE SCIENCE, 2007, 601 (13) : 2684 - 2687
  • [10] Tomographic imaging using conductive atomic force microscopy
    Toh, Alexander Kang-Jun
    Ng, Vivian
    MATERIALS CHARACTERIZATION, 2022, 186