A simple recipe for concise mixed 0-1 linearizations

被引:50
作者
Adam, WP
Forrester, RJ [1 ]
机构
[1] Dickinson Coll, Dept Math & Comp Sci, Carlisle, PA 17013 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
关键词
integer programming; nonlinear; linearization; binary optimization;
D O I
10.1016/j.orl.2004.05.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A new linearization method for mixed 0-1 polynomial programs is obtained by repeatedly applying a classical strategy introduced almost 30 years ago. Two important contributions are: the most concise known linear representations of cubic and higher-degree problems, and a simple argument for explaining and extending two alternate linearizations. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 7 条
[1]  
ADAMS W, 2001, UNPUB DISCRETE OPTIM
[2]  
FORRESTER R, 2002, THESIS CLEMSON U CLE
[3]   IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS [J].
GLOVER, F .
MANAGEMENT SCIENCE, 1975, 22 (04) :455-460
[4]  
Glover F, 1984, J INFORM OPTIM SCI, V5, P469
[5]   EQUIVALENT FORMULATIONS OF NONLINEAR INTEGER PROBLEMS FOR EFFICIENT OPTIMIZATION [J].
KETTANI, O ;
ORAL, M .
MANAGEMENT SCIENCE, 1990, 36 (01) :115-119
[6]   A LINEARIZATION PROCEDURE FOR QUADRATIC AND CUBIC MIXED-INTEGER PROBLEMS [J].
ORAL, M ;
KETTANI, O .
OPERATIONS RESEARCH, 1992, 40 :S109-S116
[7]  
Sherali H.D., 1999, REFORMULATION LINEAR