A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients

被引:164
作者
Dehghan, Mehdi [1 ]
Taleei, Ameneh [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran 15914, Iran
关键词
Nonlinear Schrodinger equation (NLS); Gross-Pitaevskii equation (GP); Operator splitting; Compact split-step finite difference method; (SSFD); GROSS-PITAEVSKII EQUATION; MULTI-SYMPLECTIC METHODS; NUMERICAL-SOLUTION; SOLITON-SOLUTIONS; IMPLICIT METHODS; SCHEMES; CONVERGENCE; STABILITY;
D O I
10.1016/j.cpc.2009.08.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a compact split-step finite difference method to solve the nonlinear Schrodinger equations with constant and variable coefficients. This method improves the accuracy of split-step finite difference method by introducing a compact scheme for discretization of space variable while this improvement does not reduce the stability range and does not increase the computational cost. This method also preserves some conservation laws. Numerical tests are presented to confirm the theoretical results for the new numerical method by using the cubic nonlinear Schrodinger equation with constant and variable coefficients and Gross-Pitaevskii equation. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 51
页数:9
相关论文
共 61 条
[1]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[2]  
[Anonymous], FUNDAMENTALS FOTONIC
[3]  
[Anonymous], SMALL SCALE STRUCTUR
[4]  
Bang O, 1995, NONLINEAR EXCITATIONS IN BIOMOLECULES, P317
[5]   Fourth-order time-splitting Laguerre-Hermite pseudospectral method for Bose-Einstein condensates [J].
Bao, WZ ;
Shen, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06) :2010-2028
[6]   Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation [J].
Bao, WZ ;
Jaksch, D ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) :318-342
[7]   Splitting methods for the time-dependent Schrodinger equation [J].
Blanes, S ;
Moan, PC .
PHYSICS LETTERS A, 2000, 265 (1-2) :35-42
[8]  
Bourgain J, 1999, AM MATH SOC C PUBL
[9]   Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: An application to trapped Bose-Einstein condensates [J].
Cerimele, MM ;
Chiofalo, ML ;
Pistella, F ;
Succi, S ;
Tosi, MP .
PHYSICAL REVIEW E, 2000, 62 (01) :1382-1389
[10]   STABILITY ANALYSIS OF DIFFERENCE-SCHEMES FOR VARIABLE-COEFFICIENT SCHRODINGER TYPE EQUATIONS [J].
CHAN, TF ;
SHEN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (02) :336-349