Brill-Noether varieties of k-gonal curves

被引:14
作者
Pflueger, Nathan [1 ]
机构
[1] Brown Univ, Dept Math, Box 1917, Providence, RI 02912 USA
关键词
Brill-Noether theory; Special divisors; Gonality; Tropical geometry; Chain of loops;
D O I
10.1016/j.aim.2017.01.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a general curve of fixed gonality k and genus g. We propose an estimate (rho) over bar (g,k)(d, r) for the dimension of the variety W-d(r) (C) of special linear series on 0, by solving an analogous problem in tropical geometry. Using work of Coppens and Martens, we prove that this estimate is exactly correct if k >= 1/5g+2, and is an upper bound in all other cases. We also completely characterize the cases in which W-d(r)(C) has the same dimension as for a general curve of genus g. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:46 / 63
页数:18
相关论文
共 8 条
  • [1] Lifting harmonic morphisms I: metrized complexes and Berkovich skeleta
    Amini, Omid
    Baker, Matthew
    Brugalle, Erwan
    Rabinoff, Joseph
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2015, 2 (01)
  • [2] A tropical proof of the Brill-Noether Theorem
    Cools, Filip
    Draisma, Jan
    Payne, Sam
    Robeva, Elina
    [J]. ADVANCES IN MATHEMATICS, 2012, 230 (02) : 759 - 776
  • [3] Linear series on a general k-gonal curve
    Coppens, M
    Martens, G
    [J]. ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1999, 69 (1): : 347 - 371
  • [4] On the varieties of special divisors
    Coppens, M
    Martens, G
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2002, 13 (01): : 29 - 45
  • [5] A Riemann-Roch theorem in tropical geometry
    Gathmann, Andreas
    Kerber, Michael
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2008, 259 (01) : 217 - 230
  • [6] ON THE VARIETY OF SPECIAL LINEAR-SYSTEMS ON A GENERAL ALGEBRAIC CURVE
    GRIFFITHS, P
    HARRIS, J
    [J]. DUKE MATHEMATICAL JOURNAL, 1980, 47 (01) : 233 - 272
  • [7] Mikhalkin G, 2008, CONTEMP MATH, V465, P203
  • [8] Pflueger N., 2017, J COMBIN A IN PRESS