GRAPH REGULARIZED NONNEGATIVE TUCKER DECOMPOSITION FOR TENSOR DATA REPRESENTATION

被引:0
作者
Qiu, Yuning [1 ]
Zhou, Guoxu [1 ]
Zhang, Yu [2 ]
Xie, Shengli [1 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Stanford Univ, Dept Psychiat & Behav Sci, Stanford, CA 94305 USA
来源
2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2019年
基金
中国国家自然科学基金;
关键词
Mannifold learning; nonnegative tensor; Tucker decomposition; dimensionality reduction; clustering;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonnegative Tucker Decomposition (NTD) is one of the most popular technique for feature extraction and representation from nonnegative tensor data with preserving internal structure information. From the perspective of geometry, highdimensional data are usually drawn in low-dimensional submanifold of the ambient space. In this paper, we propose a novel Graph reguralized Nonnegative Tucker Decomposition (GNTD) method which is able to extract the low-dimensional parts-based representation and preserve the geometrical information simultaneously from high-dimensional tensor data. We also present an effictive algorithm to solve the proposed GNTD model. Experimental results demonstrate the effectiveness and high efficiency of the proposed GNTD method.
引用
收藏
页码:8613 / 8617
页数:5
相关论文
共 14 条
[1]  
Belkin M, 2002, ADV NEUR IN, V14, P585
[2]  
Belkin M, 2006, J MACH LEARN RES, V7, P2399
[3]   Graph Regularized Nonnegative Matrix Factorization for Data Representation [J].
Cai, Deng ;
He, Xiaofei ;
Han, Jiawei ;
Huang, Thomas S. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1548-1560
[4]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[5]  
Jiang B, 2018, IEEE T CYBERNETICS
[6]  
Kim YH, 2007, ROUTL CRIT INTRO URB, P1
[7]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[8]   MR-NTD: Manifold Regularization Nonnegative Tucker Decomposition for Tensor Data Dimension Reduction and Representation [J].
Li, Xutao ;
Ng, Michael K. ;
Cong, Gao ;
Ye, Yunming ;
Wu, Qingyao .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (08) :1787-1800
[9]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+
[10]   Image representation using Laplacian regularized nonnegative tensor factorization [J].
Wang, Can ;
He, Xiaofei ;
Bu, Jiajun ;
Chen, Zhengguang ;
Chen, Chun ;
Guan, Ziyu .
PATTERN RECOGNITION, 2011, 44 (10-11) :2516-2526