Implicit-explicit numerical schemes for jump-diffusion processes

被引:65
作者
Briani, Maya [1 ]
Natalini, Roberto
Russo, Giovanni
机构
[1] CNR, ISt Applicaz Calcolo Mauro Picone, I-00161 Rome, Italy
[2] LUISS Guido Carli, I-00198 Rome, Italy
[3] Univ Catania, Dipartimento Matemat Pura & Informat, I-95129 Catania, Italy
关键词
D O I
10.1007/s10092-007-0128-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical approximation of solutions for parabolic integro-differential equations (PIDE). Similar models arise in option pricing, to generalize the Black-Scholes equation, when the processes which generate the underlying stock returns may contain both a continuous part and jumps. Due to the non-local nature of the integral term, unconditionally stable implicit difference schemes are not practically feasible. Here we propose using implicit-explicit (IMEX) Runge-Kutta methods for the time integration to solve the integral term explicitly, giving higher-order accuracy schemes under weak stability time-step restrictions. Numerical tests are presented to show the computational efficiency of the approximation.
引用
收藏
页码:33 / 57
页数:25
相关论文
共 31 条
[1]  
Amadori A. L., 2003, Differ. Integr. Equations, V16, P787
[2]  
Andersen L., 2000, REV DERIV RES, V4, P231, DOI DOI 10.1023/A:1011354913068
[3]  
[Anonymous], 1999, APPL MATH
[4]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[5]  
BARNDORFFNIELSE.O, 2001, LEVY PROCESSES THEOR
[6]   Bond market structure in the presence of marked point processes [J].
Bjork, T ;
Kabanov, Y ;
Runggaldier, W .
MATHEMATICAL FINANCE, 1997, 7 (02) :211-239
[7]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[8]   Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory [J].
Briani, M ;
La Chioma, C ;
Natalini, R .
NUMERISCHE MATHEMATIK, 2004, 98 (04) :607-646
[9]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[10]   A finite difference scheme for option pricing in jump diffusion and exponential Levy models [J].
Cont, R ;
Voltchkova, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) :1596-1626