Sodium borohydride (NaBH4) as a high-capacity material for next-generation sodium-ion capacitors

被引:12
|
作者
Jezowski, Pawel [1 ,2 ,3 ]
Crosnier, Olivier [1 ,2 ]
Brousse, Thierry [1 ,2 ]
机构
[1] Univ Nantes, Inst Mat Jean Rouxel, IMN, CNRS, F-44000 Nantes, France
[2] CNRS FR 3459, Reseau Stockage Electrochim Energie RS2E, 33 Rue St Leu, F-80039 Amiens, France
[3] Poznan Univ Tech, Inst Chem & Tech Electrochem, Berdychowo 4, PL-60965 Poznan, Poland
来源
OPEN CHEMISTRY | 2021年 / 19卷 / 01期
关键词
sodium-ion capacitors; sacrificial salt; sodium inorganic salt; pre-sodiation; composite carbon electrode; HIGH-ENERGY; LITHIUM METAL; PERFORMANCE; CARBON; ANODE; BATTERY; OXIDE;
D O I
10.1515/chem-2021-0040
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Energy storage is an integral part of the modern world. One of the newest and most interesting concepts is the internal hybridization achieved in metal-ion capacitors. In this study, for the first time we used sodium borohydride (NaBH4) as a sacrificial material for the preparation of next-generation sodium-ion capacitors (NICs). NaBH4 is a material with large irreversible capacity of ca. 700 mA h g(-1) at very low extraction potential close to 2.4 vs Na+/Na-0. An assembled NIC cell with the compositepositive electrode (activated carbon/NaBH4) and hard carbon as the negative one operates in the voltage range from 2.2 to 3.8 V for 5,000 cycles and retains 92% of its initial capacitance. The presented NIC has good efficiency >98% and energy density of ca. 18Wh kg(-1) at power 2 kWkg(-1) which is more than the energy (7Whkg(-1) at 2 kWkg(-1)) of an electrical double-layer capacitor (EDLC) operating at voltage 2.7 V with the equivalent components as in NIC. Tin phosphide (Sn4P3) as a negative electrode allowed the reaching of higher values of the specific energy density 33Wh kg(-1) (ca. four times higher than EDLC) at the power density of 2 kWkg(-1), with only 1% of capacity loss upon 5,000 cycles and efficiency >99%.
引用
收藏
页码:432 / 441
页数:10
相关论文
共 50 条
  • [1] High-Capacity C/Sn-Composites as Next-Generation Anodes for Sodium-Ion Batteries
    Kempf, Alexander
    Graczyk-Zajac, Magdalena
    Riedel, Ralf
    ACS MATERIALS LETTERS, 2024, 7 (01): : 275 - 285
  • [2] SODIUM-BOROHYDRIDE (NABH4)
    HAYASI, S
    JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY JAPAN, 1982, 40 (04) : 354 - 354
  • [3] HYDROLYSIS OF SODIUM BOROHYDRIDE NABH4
    MOCHALOV, KN
    SHIFRIN, KV
    BOGONOSTSEV, AS
    ZHURNAL FIZICHESKOI KHIMII, 1963, 37 (11): : 2404 - 2407
  • [4] Application of Sodium Borohydride (NaBH4) in Incendiary Agent
    贵大勇
    刘吉平
    代兰
    含能材料, 2007, (03) : 231 - 234
  • [5] SODIUM BOROHYDRIDE (NABH4) INITIATION OF ELECTROLESS PLATING
    MCBRIDE, DG
    VLASAK, GP
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1971, 118 (12) : 2055 - &
  • [6] Sodium Borohydride (NaBH4) as a Maritime Transportation Fuel
    Kaya, Cenk
    HYDROGEN, 2024, 5 (03): : 540 - 558
  • [7] Application of sodium borohydride (NaBH4) in incendiary agent
    School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
    不详
    Hanneng Cailiao, 2007, 3 (231-234):
  • [8] Modeling the mechanical behavior of sodium borohydride (NaBH4) powder
    Nagar, Yakir
    Schechter, Alex
    Ben-Moshe, Boaz
    Shvalb, Nir
    MATERIALS & DESIGN, 2016, 108 : 240 - 249
  • [9] Utilization of sodium borohydride (NaBH4) in kraft pulping process
    Istek, Abdullah
    Gonteki, Erdem
    JOURNAL OF ENVIRONMENTAL BIOLOGY, 2009, 30 (06): : 951 - 953
  • [10] Experimental and theoretical investigation of high-performance green-synthesized NaTiO2/AC nanocomposite as high-capacity electrodes for next-generation sodium-ion capacitors
    Onoh, Edwin U.
    Khwesa, Peredy
    Ikhioya, Imosobomeh L.
    Awada, Chawki
    Alshoaibi, Adil
    Nwanya, Assumpta C.
    Ezema, Fabian I.
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (40) : 19210 - 19227