Existence and Holder regularity of infinitely many solutions to a p-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition

被引:18
作者
Choudhuri, Debajyoti [1 ]
机构
[1] Natl Inst Technol, Dept Math, Rourkela, India
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 01期
关键词
Singularity; Non-Ambrosetti-Rabinowitz condition; Cerami condition; Multiplicity; Symmetric Mountain Pass theorem; NONTRIVIAL SOLUTIONS; INEQUALITIES DRIVEN; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; LOCAL MINIMIZERS; WEAK SOLUTIONS; LAPLACIAN; SEQUENCES; EQUATIONS; SOBOLEV;
D O I
10.1007/s00033-020-01464-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We carry out an investigation of the existence of infinitely many solutions to a fractional p-Kirchhoff-type problem with a singularity and a superlinear nonlinearity with a homogeneous Dirichlet boundary condition. Further, the solution(s) will be proved to be bounded and a weak comparison principle has also been proved. A 'C-1 versus W-0(s,p)' analysis has also been discussed.
引用
收藏
页数:26
相关论文
共 52 条
  • [1] Adams RA., 2003, Sobolev Space, V2
  • [2] Positive solutions for a quasilinear elliptic equation of Kirchhoff type
    Alves, CO
    Corrêa, FJSA
    Ma, TF
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) : 85 - 93
  • [3] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [4] [Anonymous], 2019, J FUNCT SPACES
  • [5] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [6] Superlinear nonlocal fractional problems with infinitely many solutions
    Binlin, Zhang
    Bisci, Giovanni Molica
    Servadei, Raffaella
    [J]. NONLINEARITY, 2015, 28 (07) : 2247 - 2264
  • [7] Bisci GM, 2014, ADV NONLINEAR STUD, V14, P619
  • [8] Bisci GM, 2014, MATH RES LETT, V21, P241
  • [9] Fractional equations with bounded primitive
    Bisci, Giovanni Molica
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 27 : 53 - 58
  • [10] Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations
    Caponi, Maicol
    Pucci, Patrizia
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) : 2099 - 2129