MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling

被引:78
作者
Mishra, Paras K. [1 ]
Tyagi, Neetu [1 ]
Kundu, Soumi [1 ]
Tyagi, Suresh C. [1 ]
机构
[1] Univ Louisville, Dept Physiol & Biophys, Sch Med, Louisville, KY 40202 USA
关键词
MicroRNA; Dicer; Hyperhomocysteinemia; Congestive heart failure; Extracellular matrix remodeling; Matrix-metalloproteinase (MMP); Tissue inhibitors of metalloproteinase (TIMP); CYSTATHIONINE BETA-SYNTHASE; EXTRACELLULAR-MATRIX; HEART-FAILURE; METALLOPROTEINASE ACTIVATION; CARDIOVASCULAR BIOLOGY; PLASMA HOMOCYSTEINE; THERAPEUTIC TARGET; MOUSE DEVELOPMENT; DICER; DISEASE;
D O I
10.1007/s12013-009-9063-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Elevated level of homocysteine (Hcy) called hyperhomocysteinemia (HHcy) is one of the major risk factors for chronic heart failure. Although the role of Hcy in cardiac remodeling is documented, the regulatory mechanism involved therein is still nebulous. MicroRNAs (miRNAs) and dicer have been implicated in regulation of cardiovascular diseases. Dicer is the only known enzyme involved in miRNA maturation. We investigated the involvement of dicer and miRNA in Hcy-induced cardiac remodeling. HL-1 cardiomyocytes were cultured in different doses of Hcy. Total RNA was isolated and RT-PCR and real-time PCR was performed for dicer, MMP-2,-9, TIMP-1,-3, and NOX-4. MiRNA microarray was used for analyzing the differential expression of miRNAs. Individual miRNA assay was also done. Western blotting was used to assess the MMP-9 expression in HHcy cardiomyocytes. The RT-PCR results suggest that dicer expression is enhanced in HHcy cardiomyocytes suggesting its involvement in cardiac remodeling caused due to high dose of Hcy. On the other hand, high dose of Hcy increased NOX-4 expression, a marker for oxidative stress. Additionally, HHcy cardiomyocytes showed elevated levels of MMP-2,-9 and TIMP-1,-3, and reduced expression of TIMP-4, suggesting cardiac remodeling due to oxidative stress. The miRNA microarray assay revealed differential expression of 11 miRNAs and among them miR-188 show dramatic downregulation. These findings suggest that dicer and miRNAs especially miR-188 are involved in Hcy-induced cardiac remodeling.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 46 条
[1]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[2]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24
[3]   Dicer is essential for mouse development [J].
Bernstein, E ;
Kim, SY ;
Carmell, MA ;
Murchison, EP ;
Alcorn, H ;
Li, MZ ;
Mills, AA ;
Elledge, SJ ;
Anderson, KV ;
Hannon, GJ .
NATURE GENETICS, 2003, 35 (03) :215-217
[4]  
Blacher J, 1999, J NEPHROL, V12, P248
[5]  
Blacher J, 2001, J Nutr Health Aging, V5, P196
[6]   RNA polymerase III transcribes human microRNAs [J].
Borchert, Glen M. ;
Lanier, William ;
Davidson, Beverly L. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (12) :1097-1101
[7]   Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure [J].
Chen, Jian-Fu ;
Murchison, Elizabeth P. ;
Tang, Ruhang ;
Callis, Thomas E. ;
Tatsuguchi, Mariko ;
Deng, Zhongliang ;
Rojas, Mauricio ;
Hammond, Scott M. ;
Schneider, Michael D. ;
Selzman, Craig H. ;
Meissner, Gerhard ;
Patterson, Cam ;
Hannon, Gregory J. ;
Wang, Da-Zhi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (06) :2111-2116
[8]   MicroRNAs are aberrantly expressed in hypertrophic heart - Do they play a role in cardiac hypertrophy? [J].
Cheng, Yunhui ;
Ji, Ruirui ;
Yue, Junming ;
Yang, Jian ;
Liu, Xiaojun ;
Chen, He ;
Dean, David B. ;
Zhang, Chunxiang .
AMERICAN JOURNAL OF PATHOLOGY, 2007, 170 (06) :1831-1840
[9]   HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte [J].
Claycomb, WC ;
Lanson, NA ;
Stallworth, BS ;
Egeland, DB ;
Delcarpio, JB ;
Bahinski, A ;
Izzo, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :2979-2984
[10]   Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus [J].
Davis, Tigwa H. ;
Cuellar, Trinna L. ;
Koch, Selina M. ;
Barker, Allison J. ;
Harfe, Brian D. ;
McManus, Michael T. ;
Ullian, Erik M. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (17) :4322-4330