Anisotropic single-particle dissipative particle dynamics model

被引:5
作者
Deng, Mingge [1 ]
Pan, Wenxiao [2 ]
Karniadakis, George Em [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
关键词
Dissipative particle dynamics; Single-particle dissipative particle dynamics; Colloid suspension; Ellipsoidal particle; GAY-BERNE; ELLIPSOIDAL MOLECULES; COLLOIDAL SUSPENSIONS; BIAXIAL PARTICLES; NANOPARTICLES; SIMULATIONS; POTENTIALS; MOVEMENT; DPD;
D O I
10.1016/j.jcp.2017.01.033
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We have developed a new single-particle dissipative particle dynamics (DPD) model for anisotropic particles with different shapes, e.g., prolate or oblate spheroids. In particular, the conservative and dissipative interactions between anisotropic single DPD particles are formulated using a linear mapping from the isotropic model of spherical particles. The proper mapping operator is constructed between each interacting pair of particles at every time step. Correspondingly, the random forces are properly formulated to satisfy the fluctuation-dissipation theorem (FDT). Notably, the model exactly conserves both linear and angular momentum. We demonstrate the proposed model's accuracy and efficiency by applying it for modeling colloidal ellipsoids. Specifically, we show it efficiently captures the static properties of suspensions of colloidal ellipsoids. The isotropic-nematic transition in an ellipsoidal suspension is reproduced by increasing its volume fraction or the aspect ratio of ellipsoid particles. Moreover, the hydrodynamics and diffusion of a single colloidal ellipsoid (prolate or oblate with moderate aspect ratios) are accurately captured. The calculated drag force on the ellipsoid and its diffusion coefficients (both translational and rotational) agree quantitatively with the theoretical predictions in the Stokes limit. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:481 / 491
页数:11
相关论文
共 42 条
[1]   Expressions for forces and torques in molecular simulations using rigid bodies [J].
Allen, Michael P. ;
Germano, Guido .
MOLECULAR PHYSICS, 2006, 104 (20-21) :3225-3235
[2]  
[Anonymous], 1991, LOW REYNOLDS NUMBER
[3]  
[Anonymous], 1979, Nature
[4]   Analytical first derivatives of the RE-squared interaction potential [J].
Babadi, M. ;
Ejtehadi, M. R. ;
Everaers, R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (02) :770-779
[5]   A GENERALIZED GAY-BERNE INTERMOLECULAR POTENTIAL FOR BIAXIAL PARTICLES [J].
BERARDI, R ;
FAVA, C ;
ZANNONI, C .
CHEMICAL PHYSICS LETTERS, 1995, 236 (4-5) :462-468
[6]   A Gay-Berne potential for dissimilar biaxial particles [J].
Berardi, R ;
Fava, C ;
Zannoni, C .
CHEMICAL PHYSICS LETTERS, 1998, 297 (1-2) :8-14
[7]   GAUSSIAN MODEL POTENTIALS FOR MOLECULAR-INTERACTIONS [J].
BERNE, BJ ;
PECHUKAS, P .
JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (08) :4213-&
[8]   Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics [J].
Bian, Xin ;
Litvinov, Sergey ;
Qian, Rui ;
Ellero, Marco ;
Adams, Nikolaus A. .
PHYSICS OF FLUIDS, 2012, 24 (01)
[9]   Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics [J].
Boek, ES ;
Coveney, PV ;
Lekkerkerker, HNW ;
vanderSchoot, P .
PHYSICAL REVIEW E, 1997, 55 (03) :3124-3133
[10]   On firm ground: IP protection of therapeutic nanoparticles [J].
Burgess, Paul ;
Hutt, Peter Barton ;
Farokhzad, Omid C. ;
Langer, Robert ;
Minick, Scott ;
Zale, Stephen .
NATURE BIOTECHNOLOGY, 2010, 28 (12) :1267-1271