On the existence and application of incomplete nearly Kirkman triple systems with a hole of size 6 or 12

被引:24
作者
Deng, DM
Rees, R [1 ]
Shen, H
机构
[1] Mem Univ Newfoundland, Dept Math & Stat, St Johns, NF A1C 5S7, Canada
[2] Shanghai Jiao Tong Univ, Dept Appl Math, Shanghai 200030, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
group-divisible designs; resolvability; subsystems;
D O I
10.1016/S0012-365X(02)00469-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved in this paper that for h is an element of {6, 12}, there exists an incomplete nearly Kirkman triple system (NKTS) of order v having a hole of size h if and only if v equivalent to 0 (mod 6) and v greater than or equal to 3h, thus providing a good foundation for the embedding problem for NKTS. As an application, we prove that: (1) For u equivalent to v equivalent to 0 (mod 6), v greater than or equal to 48, and u greater than or equal to 4v - 18, there exists an NKTS(u) containing a sub-NKTS(v). (2) For v = 18,24,30,36 or 42, there exists an NKTS(u) containing a sub-NKTS(v) if and only if u equivalent to 0 (mod 6) and u greater than or equal to 3v. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:209 / 233
页数:25
相关论文
共 17 条
[1]   RESOLVABLE GROUP DIVISIBLE DESIGNS WITH BLOCK SIZE 3 [J].
ASSAF, AM ;
HARTMAN, A .
DISCRETE MATHEMATICS, 1989, 77 (1-3) :5-20
[2]  
BAKER RD, 1977, UTILITAS MATHEMATICA, V11, P289
[3]  
BROUWER AE, 1978, UTILITAS MATHEMATICA, V13, P311
[4]  
COLBOURN CJ, 1996, HDB COMBINATORIAL DE
[5]  
GE G, IN PRESS DESIGNS COD
[6]  
Kotzig A., 1974, P 5 SE C COMB GRAPH, P607
[7]  
MENDELSOHN E, 1987, ARS COMBINATORIA, V24, P39
[8]  
PHILLIPS NCK, 1998, JCMCC, V28, P299
[9]  
Ray-Chaudhuri D. K., 1971, P S PURE MATH, VXIX, P187
[10]  
REES R, 1987, ARS COMBINATORIA, V23, P107